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Random matrices with correlated elements: A model for disorder with interactions
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The complicated interactions in the presence of disorder lead to a correlated randomization of states. The
Hamiltonian as a result behaves like a multiparametric random matrix with correlated elements. We show that
the eigenvalue correlations of these matrices can be described by the single parametric Brownian ensembles.
The analogy helps us to reveal many important features of the level statistics in interacting systems, e.g., a
critical point behavior different from that of noninteracting systems, the possibility of extended states even in
one dimension, and a universal formulation of level correlations.
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I. INTRODUCTION determination of the Hamiltonian. As a result, sofoe all)
elements of the Hamiltonian matrix behave like random vari-
The theoretical formulation of physical properties of elec-ables. The distribution properties of the matrix elements are
tronic systems is usually based on independent electron agoverned by the nature of intéractions and disorder; their
proximation. However, experiments on quantum dots as weMlistributions need not be the same, may or may not be cor-
as extended semiconducting electron heterostructures shdglated, and some of them can be nonrandom, too. For ex-
that Coulomb interaction between electrons is by no mean@Mple, a single particle Hamiltonian with a “white noise”

small[1,2]. The influence of Coulomb interaction is particu- disorder potentialthat is, noe-e interaction or impurity in-
larly strong in the presence of a disordered environmentlt,eraCt'or) can be modeled by a random matrix with uncorre-

with bulk and mesoscopic systems both revealing new fegated elements. However the presence of local interactions

tures [4,7]. Examples include Coulomb blockade Iohenom_among impurities or electrons or both will result in a corre-

S . lated randomization of matrix elements of the Hamiltonian.
ena, .IO.W energy anoma_llefs In transport .and thermodynam| nfortunately not much information for random matrices
coefficients, non-Fermi liquid effects in effectively one-

) ; . . . with correlated elements has been available so far. Our ob-
dimensional structures, various manifestations of the Kond

: ective in this study is to suggest a way to fill in this infor-
effects, the fractional quantum Hall effects, etc. A theory of i ation gap. Here we show that the eigenvalue distributions

physical properties including electron electr@e) interac-  f various ensembles, with correlated matrix elements and a
tion is therefore very much required. multiparametric probability density, appear as nonequilib-
The presence of interactions along with disorder makes gum stages of a Brownian type diffusion process. The dif-
physical system so complex that its properties can be andusing eigenvalues evolve with respect to a single parameter
lyzed only by a statistical tool. In the past, the statistics ofwhich is a function of the correlation strengths between vari-
single particle states of noninteracting systems with externabus matrix elements. The parameter is therefore related to
disorder potential has been well-modeled by the Wignercomplexity of the system represented by the ensemble and
Dyson ensembles, also known as standard random matridan be termed as “complexity” parameter. The solution of the
ensemblesRMT) [5,3,7. The ensembles have also beendiffusion equation for a given value of complexity parameter
used successfully to describe the statistical properties of thgives, therefore, the distribution of eigenvalues, and thereby
high energy states of many body systems with no disordettheir correlations, for corresponding system. As discussed
e.g., nuclei, atoms, et€5,3,7. The intuition suggests there- later, the diffusion equation can be solved by using its anal-
fore a possibility of random matrix modeling of systemsogy with the one governing the evolution of Brownian en-
when disorder and interactions are both present. Recent stusembleq10]. The analogy also helps in theoretical formula-
ies in this direction have led to two types of random matrixtion of the level-density correlations of interacting disordered
models, however both impose specific conditions on naturgystems.
and degree oé-e interactions as well as disorder in the sys-  The paper is organized as follows. In Sec. Il, we derive
tem([8,9]. In this paper, we consider a random matrix modelthe diffusion equation for the matrix elements of the Hermit-
suitable for generic conditions for both disorder and interacian operators governing the dynamics in complex systems.
tions and show that the spectral statistics can be described IBor a clear exposition of our technique, we first consider the
a mathematical formulation analogous to that of noninteracteases with 2nd and 3rd order matrix elements correlations
ing disordered systems. The parameter governing thand generalize toth order correlations later on. The diffu-
localization— delocalization transition however turns out to sion equation for the matrix elements is then used to obtain
be different in the two cases. the equation governing the evolution of the eigenvalues in
The complexity of many body interactions or external dis-Sec. Ill. To maintain the flow of the discussion, only relevant
order potential associates a degree of uncertainty in the exasteps are given in Secs. Il and lll; the details can be found in
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the Appendices. As mentioned above, the evolution equatio(H ) dlog C/&sz Ly D general, different system con-
for the eigenvalues turns out to be a very well-known equadltlons can give rise to different sets of distribution param-
tion and calculation of the eigenvalue correlations from theetersb. A slight perturbation of the system due to a change in
equation has been discussed in detail many times. We therggs parameters perturbs the matrix elements and therefore the
fore avoid the repetition but give a brief discussion to keepprobability densityp(H,b). In the following, we consider a
the article self-contained. This is followed, in Sec. IV, by aparticular flow in the matrix space generated by an operator
discussion of the application of our technique to two well-L (describing the diffusion of the matrix elements with a

known systems. We conclude in Sec. V by summarizing ougonstant drift and confined by a quadratic poteitial
main results.

-
Il. SINGLE PARAMETRIC EVOLUTION OF MATRIX = 2 |: +H } 2
ELEMENTS 2 aH

Let us consider a complex system represented by a _
X N Hermitian matrixH with H=3%,()>'Hy as its ma- whereg,=1+4, with §,=1 for u=(kk;s) and 5,=0 for u
trix elements. The subscriptto a variable refers to one of its =(kI;s), k#1. The parametey is arbitrary, giving the free-
components with3 as their total number. The paramejer dom to choose the end of the evolutift0]. The choice of
contains the information about underlying symmetry of thethe above form ot is motivated by our desire to obtain the
system. For example, for systems with time-reversal symmegquation governing the eigenvalue-dynamics in a well-
try and integer angular momentum, the Hamiltonian in a geknown mathematical form.
neric representation is a real-symmetric matrix which gives The evolution of the probability density(H,b), gener-
B=1. The Hamiltonians for a system without time reversalated by operatoL in the matrix space, is related to a multi-
symmetry are, in general, complex Hermitian which givesparametric flow inb space. This can be shown as follows.
B=2. Due to its Hermitian nature, the independent real paThe probability density being a function of bathandb, the
rametersHy.s, which determine all matrix elements df are  rates of change of with variation of matrix elements and

M=N-+N(N-1)8/2 in number. For notational simplification, Parameterd can be given as
let us denote them b, where u={kl;s} is a single index
which can take a value from-% M.

The elements oH describe the overlap between various
states of the basis in whidH is represented. A complicated My
nature of interactions or presence of disorder in the system
associates a deterministic uncertainty with the matrix ele-
mentsH . As the interaction between various states is gov- dp
erned by the nature and complexity of the region, the ran- o - HuHur (4)
domness associated with the elemerfscan be of various 1tz
types. In general, the complexity of a region can cause mul-
tiple interactions between basis states, resulting in correla-
tions between matrix elements. In this section, we consider dp_
the cases which can be modeled by an ensemble described by b
a probability densityp(H, b) « e F ™) with function F(H) as a H
sum over various combinations of the matrix elementsl of

)
b +2 ﬂﬂﬂﬁtz K1k ﬂz]p (3)

==H,p. 5

where n("l) is the frequency of occurrence of the tek,

A. Correlated Gaussian case in the ComblnatlorH H,, (e, (Ml 1, =2 for uy=p, and 1

A Gaussian ensemble of Hermitian matrices with corre- for py # pp). With tge help of Eqs(3) an?(‘% ?td”ft in the
lated elements can be described by a matrix elements dlstlmatr'x space can be written in terms of a drift in parametric

bution space,
P(H,b)=Cexp| - E b E b dp
=1 ﬂl 'ul 11 =1 ,ul,uz 'ul 2 E HMJ‘(}]H ECI—L]_HM;LP E Cl—’v]_,uz MzH,le P
My M1k
=Cp(H,b), 1
with C as a constant anlol as the set of coefficients, and =2c Cus g &b + 2 Cuugpy ab 6)
. . LK M1 ) Mlﬂz

bﬂlﬂz. Here the subscripts to a coefficient are indicators of

the terms present in the product of which it is a coefficient.

Further, inX, . similar pairs are included only once. wherec,,,=b, andc, , =7 iﬁ‘lﬁ b, Similarly a diffusion

The d|str|but|on parameters,,, , are the measures of in the matrix space can be expressed as a combination of
correlations between pairs of the matrix elementsdrifts in parametric space,
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A substitution of the above equalities in E&) gives us the
following,

Lp=Tp+Cp, 9)

with (~3=2Ml[y+(ng/2)(ci Mle)] and T as the generator
of the dynamics in the parametric space,

Jd
T= Ef + > f (10)
Ml&bﬂl M1k Mlﬂzabﬂlﬂz
Here M1 ycﬂl Eﬂzgﬂz Mo '“1'“2 and f/‘wz:yc#lﬂz
—(1/ 2)2#39#3 panaCuguy:

The above equation appears complicated, with many par
metric derivatives present on its right side. However it is
the
M-dimensionab space to a single parametric drift in another

possible to map the multiparametric flow in

parametric space, say space, consisting of variablsg, i
=1—M whereM=[3+M]M/2. In other words, the genera-
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y1= 2 f dbulzﬁLl G+ >, J iy 12 i})ﬂ G + const,
M1 M1 M2
(15
(1) (1) 1)
whereG=[%, z Z f i +2 szﬂlﬂz] and the se#® of
the functlonsz( ), /W are chosen such that the ratio
(1) (1)
[2 db, + 3 27, d Wz] (16)
M1 M

is a complete differentialsee Appendix B Note it is pos-
sible that the ratiq16) can be made an exact differential for
different setsZ? which will lead to different solutions of.
However, any two such solutions fgr are different from
each other only by a constat&ppendix B.

The conditions(14) further imply that parameterg,, k
> 1 behave as the constants of the dynarfiesnerated by.)
in the matrix space,

yk:§1 f

(k) (k)
with 2, Z f szzu iy fﬂlﬂ =0 for k>1.

The substltutlon of Eq(ll) in Eqg. (9) gives the single
arametric evolution of the joint probability densjyH) in

he matrix space
iz ﬁ_@_

P
E—{—+7 p ,
~ oH, [ dH, m Ay

wherey; is given by Eq.(15). As the distribution parameters

A0

(k)
db, z,, + #1:“2##

i Z, +const fork>1,

l‘“l M2

17

(18

tor T of the flow in theb space can be reduced to a partial depend on the complexity of the systeyn.can be termed as

derivative with respect to just onespace variable, say;:

dp

Nily,...yu

The desired transformatidm— y required to convert Eq.
(10) into the form(11) can be obtained as follows. By using
the definitiond/ ax=3,(dy/ 9x) (9l dy,), with x as variouso
parametersT(b) [Eqg. (10)] can be transformed in terms of
the derivatives with respect ¥

T(y[bDp= (11)

dp
Tp=2 A, (12)
k ka
where
_ Wi i
Ak=EfMlb_+ > Fua (13
M1 M1 MM K1k

Equation(12) can be reduced in the desired form of Ebjl),
if the transformatiorb—y satisfies the following condition:
A= da

fork=1— M. (14

The parameterg as a function ob can now be obtained by
solving the set of condition&l4),

the complexity parameter.
The parametric space transformattor y maps the prob-
ability densityp(H,b) to p(H,y(b)). As a result,p depends

on various parameteng, k=1— N. However, Eq.(18) im-
plies that the diffusion, generated by the operdtan the
matrix space, is governed by; only; the rest of them,
namelyy,, k>1, remain constant during the evolution. Note
it is always possible to define a transformation from the set
b—y with y,, k>1 as constants of the dynamics generated
by L. This can be explained as follows. A matrix element,
sayH;;, describes how a basis stafginteracts with state);
throughH. This results in dependence of the matrix element
correlations and, thereby, of the deton the basis param-
eters, e.g., basis indices. As the basis remains fixed during
the evolution, the suitable functions of basis parameters can
be chosen to play the role gf, k> 1. (Note a similar trans-
formation has been used to obtain a single parametric evolu-
tion of multiparametric Gaussian ensembles of Hermitian
matrices; see Refl10] for details.

B. Non-Gaussian case with third order matrix
elements correlations

Let us consider an ensemble of Hermitian matrices with a
3rd correlations among its matrix elements, described by a
probability density
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M M
B(H,b) = Cex b, H, - b, . H,H =1, A S,
p P~ E: N M1§2=1 g g g - 1(7b k2 ﬁbuluz
‘ Mk
+ > f (25)
- M fofh ,
Ml,}is:l b/L1M2/L3H,u1H,u.2H,u3] g gt 172 35[:)#1#2#3
=Cp(H,b). (19) '
A th terd th f Bi= X CM1“2#3CM1“4M5(9t:9y I t[)?yk (26)
galn € parameter gty are e measures ol cor- L s P

relations among three matrix element¢H, H, H,) : _ _—
=log Cldb, g Proceeding as in the Gau55|an case, WeThe reduction of Eq(24) for Tp to a single derivativép/ dy,

get will impose the following conditions on the transformation

b—y:
P [, 43, H, + S H, H =
(7H,u Cuay Crspa iy Cragpppug™ Mg P Ac=N, (27)
1 M2 M43
(20) By + By = 0. (28)
ap By solving conditiong27), y; can be obtained as a function
b =-H,H,H.p (21)  of the parameters,
Hakot3
I . . ~ i @
The derlva.tlvesﬁp/a.b# and &p/abw2 remain the same as in Yy, = E f db:““lz/” G+ f MMZMMG
the Gaussian cas{gwen by Eqs.(4) and (5)], B2
>H =>c +>c + > f ZV G+ const (29)
Iz (2 (s Mg Mot ’
M1 10"H M1 1o"b M1 BLK2 ’ Z&bﬂlﬂz H1H2:143 v #lﬂ "
ap where
' Iz §M CMIMZMg&bM Mokt , 2 (D¢ e
LH2 K3 1723 —
() e (ug) G=[ m Zoy Ty * Em i Zattz Fussiy
wherechMzMS— "uluzugb#wzﬂs with USSR the frequency o )
of occurrence of the termH, in the combination +2 g Sttt PPN

HuHuHpye The second order derivative pfwith respect to

H, can be calculated by differentiating E(0) which, on Again the choice of the functiong? is so as to make the

combining with Eg. (21), again leads to the fornlp ratio
=(T+C)p. HereL is still given by Eq.(2); however, the SAb, + > 72V db,  + > 2V db
generatorT now contains the first order parametric deriva- | %, "% ' a GOty fariois Sapea” vz
tives as well as their products,
(30
Tp=2>, fM1 + L a complete differential. However, the s&¥ in this case has
B ‘9b w1 LM abﬂlﬂz to satisfy an extra set of conditions given by E29). Again
Jp as in the Gaussian case, the parameygr$>1 behave as
+ > f fatiotts constants of dynamics for this case, too,
M1 M2: 43 abﬂlﬂzﬂg
1 dp ap yk_zf » k4 2 f "
+ 2 CouypuprsCugpigrs pdb b , (23 W 'ul M1, 172 '“1“2
M1 M2 345 MoM3 Mgt
i - _ (1) (k)
with Fuy =7, = (1122, 0,,[2C, Cpupps, + oy, (M0, +M%M f BuyuZiiy TOTK>1, (3D
_1)]’ fﬂlﬂzzycﬂlﬂz_(l/z)xﬂsgﬂs[cﬂlﬂs MoM3 ZCM3Cﬂ1ﬂ2ﬂ3] e
andf, = YCu s ™ 2 1,9, Crtppt Crtg iy with arbltrarlly chosen funcUons( ) satisfying the constraint
Similar to the Gaussian case, Eg3) can also be reduced s z L I S ) =0 for k

ug i g g gy ¥ sy ) g™
>1 as well as the conditions given by E@8).
Using theb—y transformation given by Eqg$29) and
(31), the dynamics op(H) with third order matrix element

to a single parametric derivative, namely fofii), by using
a transformation from the sétto another sey. The operator
T in this case transforms as

dp dp dlog p correlations can again be described by Eff). Note that
Tp= E A+ Blkay P (24) although the evolution is governed by the same equation, the
Kok ' X complexity parameters are different for Gaussian and non-
where Gaussian cases.
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C. General case

A generalized ensemble of Hermitian matrices with cor-
related elements can be described by a matrix elements dIS-

tribution p(H)=Cp(H) where

p(H) = H expl 2 bp(r

r=1 p(r)

)]

with C as a normalization constant. Here symp@il) refers

to a combination ofr elements chosen from a set of total

I\~/I:N+N(N—1),8/2 elements of uppefor lowen diagonal

matrix; note the terms present in a given combination need fo=-

not be all different. TheHr H,., implies a product over

terms present in thpth comblnatlon with coefficienby,, as
a measure of their correlatlor{f[ 1H ) dlog C/ dby).

TheX, is a sum over all possible comblnatldmetal (M)F ]

of r elements chosen from a set of toMlof them; the sum
includes only different combinationgHenceforth subscript
p(r) will be written asp only unless details are required for
clarification]

Using Eq.(32), the partial derivatives qgf in matrix space
and parametric space can be given as

22[ (ﬁ )éalong]
e H —"1p, (33
H, =59 o) S, P 33

(34)

)

ab o

As a result, a drift in the matrix space can be related to a drift

in the parametric space:

SHr=S Sy

Iz wmor,p(r)

(#) b.——

pab (35

where the ternng(‘r) m_15(,up ; ) counts the frequency of

occurrence of the elemeft, in the pth combination ofr
elements[é(,up w)=1if Hap, = 1 and 0 |f,upJ # w]. Similarly,

a diffusion in the matrix space is related to a nonlinear flow

in the parametrlc space,

dop
S-S S gl
d r=1p(r) r'>(n+2-r) p'(r') pru Op’+u
-3 = —
! ,U« b
<(n+2-1) p'(r') p’+p-p?
dp
+(p) = 1) : (36)
ﬁbp_ﬂz

Here the notatiorA+B refers to a combination which con-
tains the elements of both andB. Similarly A-B indicates
dropping of all the elements @& from A. Further the nota-
tion uX is used to denote a combinatidﬂlﬁ (that is, kth
power ofH,,).
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operatorT, Lp:Tp+6p, whereT is now given by

dlog P, p
E—HEE E 2 Ny by T b’
m r=1p(r) | ¢'>(n+2-1) p'(r') P
(37)
with
hpp’ = bubu/[z gp.77ulu) ﬂfﬁ)}
yn

and

Er P’ r) [Egﬂn;“)ng“]
{2 7P, (P 1)]bu+2y[2 n;:”]bp

Here g refers to a combination of,=r'-r+2 elements,
such thatq(r))=p’(r’)—p(r)+ (k)% Similarly u,u’v refer
to combinationsu(rg)=p(r)+1, u(ry)=p’(r')+1 and v(r,)
=p(r)+2 of rg=r+1, ry=r+1, and r,=r+2 elements,
respectively.

The desired transformatidm— y required to convert Eq.
(37) into form T(y[b])p= dp/ dy; can be obtained as follows.
The substitution 0B/ dby,==,Dy(d/ dy,) in Eq. (37) with

Dyj= dyi/ dby) transformsT in the form of Eq.(24) where
A, and By, are now given as
Ady,b) =X > fDyp, (38)
rop(r)
Bi(y,b)= X X hyy(X)DipDiy- (39)

r,p(r) r'p'(r")

Again, for desired reduction of to dp/dy,, the transforma-
tion b—y should satisfy conditions given by Eq®7) and
(28). The conditions(27) can then be solved to obtain the
variables in sey as functions of variable in sdt (see Ap-
pendix B

Y= >

r,p(r)

db,z¥[1 - §q + G ] +const,  (40)

with G, = 5k1[2rpr)z fp] 1 and zg‘) as arbitrary functions
which makeX, p(r)dbpz [1+(G- 1) Sl an exact differential
and satisfy the constrai, /2 ) o (r,)z z fpp,62 0 [the

latter is required by the conditior(89)].

We find, therefore, that the diffusion of probability density
for ensembles of Hermitian operators with correlated matrix
elements(any ordey, is governed by a single parametgr
with evolution described by Eq18). The eigenvalue statis-
tics of the above ensembles can therefore be studied by an
exact diagonalization of Eq18).

lll. SINGLE PARAMETRIC EVOLUTION
OF EIGENVALUES

The eigenvalue equation for the mattik can be given

Again, the matrix space flow generated by the operator asHU=AU with A as the diagonal matrix with eigenvalues
[Eg.(2)] can be related to a parametric flow generated by the; of H as its matrix elements and as the eigenvector
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matrix (unitary for complex Hermitian case and ortho-
gonal for real-symmetric case The probability density I, =2 &—2 = aH H T ©pdH (49
P(E,y,b) of finding eigenvalues,; betweenE; and E;+dE n Hu
at a givenY can then be obtained from the matrix elements
distribution, {2 9, M Iy ]~dH
P
N oy aE Em 2 oH, dH
PEyIbD = | IT8E - \)p(H,ylb)dH.  (41) J
o —E—fﬂ&E )\)E—E ””dH (50)
o JEn ) T 2 H

HereE refers to a diagonal matrix with elemeris, ... ,Ey.
As the Y=y, dependence oP in Eq. (41) enters only Now by using Eqs(A3) and(A5) of Appendix A, I, can be
throughp, a derivative ofP with respect toY can be written ~expressed in terms of eigenvalue derivativep,of
as follows: ,
#P BP
. 51
D

m#n

P _ =25 pr=
Ve H S(E; -\ )—dH (42) "
= A substitution ofl; andl,, given by Eqgs.(47) and(51), in

The diffusion equation fop, namely Eq.(18), can now be Eq. (43) leads an equation describing the single parametric

used to rewrite Eq42) as evolution of the eigenvalues of ensemblg),
9P P < d| 9 B
_ —=>—| =+ +9yE,|P. (52
&Y_Il+|2, 43 Y %aEnlﬁEn n%n Emn—Eq 7 (52

where Equation(52) describes the evolution of the eigenvalue den-
sity P(E,y[b])=P(E,Y,y,, ...,ym) due to variation of the
I(H parameterY from an arbitrary initial state, salp(Eg,y[bg])
lp= 72 f S(E- ’\)(_M_p)dH (44) =P(Ep, Yy,Ys, ... ,Ym) Occurring atY=Y,. Note here that the
parametersy; (j>1), being constants of motion, have the
same value for both initial ensemb}gHy,by) as well as
p(H,b). The evolution of the eigenvalues tends to a steady
'2-2 H oE - )\)_dH (45 state in limitgP/dY —0 or Y— . The solution of Eq(52)
in the limit is a Wigner-Dyson ensemb|&]: P(E)= H,<,|E

The integrall, can be simplified by using integration by ~Ejl’e” (2% (thus a GOE forB=1 and a GUE foiB=2).
parts Note under certain conditions, the steady state solution

may also correspond to the eigenvalue distribution of an en-
semble of antisymmetric Hermitian matrices. A knowl-
li==vy>, J[ H S(E; - )\)] H,pdH (46)  edge of the solution of Eq(52) can now help us in de-
oH =1 termining the n-level density correlatlonsRn defined
as  Ry(E;,Ep, ... .EniY)=[NU(N-n)STIY, . dEP(E;Y
=Yp). The first order correlatiofr; is also known as mean
yE H SE -\, ){2 I\ }de level density and its inverse gives the mean level spaging
=1 JEn P of the full spectrum(that is, average of spacings in full
length of the spectrumBy a direct integration, Eq52) can
also be used to study the evolutionRyfwith changing com-
plexity of the system.

A further simplification of the above equation requires a Equation(52) is applicable for arbitrary values of the co-
knowledge of the rate of change of eigenvalue$iodue to q bp y
efficientsb; it is therefore valid for the case of uncorrelated

a small change in its matrix elements. The rate can be Obéau55|an ensembles too. The latter have been shown to be
tained by using the eigenvalue equation for mahiivalong

with the unitary(or orthogonal for real-symmetrid) nature good models for noninteracting systefff§. Within random

L . . matrix framework, therefore, we find that the energy levels
of its eigenvectorgsee Appendix A Using Eq.(A2) of Ap- . L i .
pendix A in Eq.(47) we get of both systems, interacting as well as noninteracting, un-

dergo a same diffusion process with changing system param-
eters. As a result, the level statistitand related physical
l,= 72 i(EnP)- (48) propertieg in the two cases can be described by the same
mathematical formulation. However note that, due to differ-
ent complexity parameters in general, the rate of evolution is
The second term can similarly be rewritten as follows: different in the two cases.

y7

(47)
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The advantages of a single parametric formulation of thdocal mean level spacings. This results in an increasing de-
evolution of eigenvalues is manifold and have been dis{ocalization of eigenfunctions and Wigner-Dyson behavior of
cussed in detail in Ref.10] in the context of noninteracting level statistics.
systems(or uncorrelated ensembleshe similarity of Eq. (iii) Critical regime.(Y-Yg)A;?=f(N% =a=a const. The
(52) with that of Eq.(17) of Ref. [10] allows us to use the perturbation in this case mixes only a fin{teonzerg, fixed
discussion given in Secs. I D, | E, and Il of Rgf0] for the ~ number of levels even when the system is growing in size.
correlated ensembles t(iwith o rep|aced byE) However, The finite, nonzeroA value in limit N— therefore giVES
for completeness sake, we briefly review it here again. Equarjse to a third statistics, intermediate between initial en-
tion (52) is similar to the equation governing the evolution of Semble and Wigner-Dyson ensemble, which is known as the
eigenvalues in the Dyson’s Brownian motion model whichcritical Brownian ensembl¢CBE). This being the case for
was originally introduced by Dyson to describe the arbitrary values ok (nonzero and finite an infinite family
eigenvalue-dynamics of an ensemble of Hermitian matrice8f critical BE, characterized by, can occur during transition
subjected to random perturbation; the nonequilibrium statefom initial ensemble to Wigner-Dyson ensembles.
of this model are known as Brownian ensemhisse Chap. The same evolution equations &f for correlated en-

8 of Ref.[5]). Later on it was shown that when an ensembleSembles and BE imply a similarity in their eigenvalue distri-
Ho (fixed or randomis subjected to a random perturbation, _butlons for allY values, under similar initial cond|t|or[$l1§t

of strengthyY —Y,, by a standard random matrix ensemigle iS, P(E, Yo) same for both the casp#\s a result, one obtains
(described by a probability densigz?/2Tr vz)' the resulting the analogous evolution equations for their corre!auﬁtg,s
ensembleH=H,+(\Y—=Y,)V behaves like a Brownian en- too[see Eq(16) of Ref.[12]]. The mean Ieve] densitl; of
semble(BE) (see Chap. 14 of Ref5], Chap. 6 of Refs. a correlated ensemble can therefore be given by the mean

[6,12] and[10]). HereH, andV may belong to a same sym- level density of a BE with samgf-Y,) value and belonging

metry class, with\Y-Y, governing the parametric_eigen- tFO a;hsarphe symlmetry fclasétlast.that c])cfhgo;relat%d enserr;btlfa
value dynamics, or different symmetry classes with-Y,, urther the analogy of evolutions ot higher order correiations

as a parameter for symmetry admixing transitions. The stall= 1) in the two cases implie§) the discontinuity of tran-

tistical properties of BE depend only on the parametersmon of R, for infinite size correlated ensembles afiid a

Y=Y, besides underlying symmetry and many of their Cor_smooth crossover dR, for finite correlated ensembles. The
relatioons are already knowi2] crossover parameter for correlated ensembles can again be

As discussed in Ref12], the mean level densiti, of a  defined by Eq(54) where nowY-Y, is the complexity pa-
BE changes from an initial state to a semicircular fqtypi- rameter Of. the correl'ated ensemblg amds_ Its qual mean
cal of Wigner-Dyson ensemblest the scale ofy(Y-Y,) level spacing. Note, in the case @fdimensional disordered

: : systems of linear sizk, the number of states in a volume of

=NA? W'th A'(E’.Y) as the local mean Ievell spacing at en- i?wlear dimensiory in d dimensions i$1(0)® with n(0) as the
ergy E; its evolution can therefore be described in terms ofI . . L
the parameterY-Y,). However, the transition of level- density of states at Fermi Ie_vel arfias the Iocahzatlon
density correlations to equilibrium, wittY —Y,) as the evo- length. Cons:equently, the typ|_c1a| energy separation between
lution parameter, is rapid, discontinuous for infinite dimen—Such states iy(E, Y)=(n(0)f) . Similarly the mean level

. . spacing of states in the full length of the spectrum is
sions of matriceg12]. F'or smallY and largeN, a smooth A(E.Y)=(n(0)LYL. For disordered systems, the local mean
crossover can be seen in terms of a rescaled paramhé&fgr

level spacing), can therefore be expressed in terms of the
A(E) =YY = Yol/AZ. (53 mean level densitR, asA=(L/{)R;*.
The paramete, being a function of the distribution pa-

The limits A — 0 andA — < correspond to the level statistics rameters of the matrix elements, is sensitive to the changes in
approaching the initial state and Wigner-Dyson ensembleshe system parameters, due to their influence on the system
respectively. As obvious from the definition df, an inter- interactions and their uncertainties. Some examples of such
mediate state between two limits occurs when the perturbasystem parameters are disorder, dimensionality, boundary
tion \Y-Y, mixes levels in a finite energy range olocal  and topological conditions, system size, etc. The presence of
mean level spacings:=\Y-Yy/A,, 0<r<N. For finite  disorder randomizes the interactions in the system with de-
size BE, A varies smoothly with changiny—Y, which re-  gree of disorder affecting the distribution parameterand
sults in a continuous family of BEs, parametrized By  consequentiyA. The dependence df on dimensionality and
However, the level statistics for the large B&ize N—>)  boundary conditions can be explained by using a simple ex-
can be divided into three regions. ample. Consider &I X N lattice with a Gaussian site disorder

(i) Initial regime: (Y-Yg)A;2— f(N™Y). If the local mean as well as a Gaussian type random interaction between
level spacing), increases with siz& at a rate faster than nearest-neighbor sites. The lattice Hamiltontifrin site rep-
that of \Y-Y,, the perturbation will mix fewer number of resentation, is a sparse matrix with or{®+1)N nonzero,
levels as system size increases. The level statistics therefoiredependently distributed matrix elements; heteis the
approaches its initial state in the infinite size limit. number of nearest neighbors of a site. Consequently only

(i) WD regime:(Y—Yo)A[2—>f(N). Due to change i, (Z+1)N b parametergout of N?) contribute toY. As the
with size N being slower than that of Y-Y,), even a small coordination numbe? is different for different dimensions
change in complexity parameter in this case is capable ofind boundaries of the lattice, tZedependence oY results
mixing the levels in an increasing energy range of manyin its dependence on the dimensionality as well as boundary
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conditions of the system. Further the local mean level spacdently [13]. For a Gaussian type disord&iV(r)V(r’))
ing is also sensitive to the dimensionality as well as the:(vg/zmz)e-lr-r'|2/2«2' the matrix element correlations in
boundary conditions. A variation of any of the latter param-,e Jowest Landau levah=0 can be given a&Vo.o Voo
eters can affect both; andY and therefore\; (see also Ref. — (V;\Vi), where el

[11] where the dependence df on system parameters is 1 kI
explari)ned by considering an example of Anderson Hamil- (Vi Vi) = (Vﬁ/IcLya\s“'ZT)&(i —j, I -ke - )2a®2g(i - W?12a?
tonian.

The size dependence df also plays a crucial role in (59)
determining the level statistics of the correlated ensemble ijyith o2=(1 +02/I§) as a measure of the correlation length of
the crossover regime. In general, bofh Y, as well as the  the potential relative to the magnetic length (7:/eB)*/2
local mean level density are the functions of system 8lze [13]. Using the notatiorH . = Hyy, the distribution param-

which results inN dependence of. As a consequence, the eters of the matrix elements of the Hamiltonian in the Lan-
level statistics in finite systems smoothly approaches one Qfay leveln=0 can be given as

the two end points, namely, — 0 or A — o, with increasing

system size. However, as in the BE case, the variatioh of (Hij) = &6, (56)
in infinite correlated ensembles may lead to an abrupt tran-
sition, with its critical point given by the conditioh =size (Hij.sHi:e) = 635”- S+ (Vij.sVii:e)» (57)

independent. As in the BE case, the size independende of
at the critical point results in a level statistics different from
the two end points. Note if the size dependence&ﬁﬁn a
correlated ensemble remains different from tha¥efY, un- 1
der all complexity conditions, the system will never undergo (Vij:sVias) = 5[<Vijvlk> +(= DKV Vidldse . (58)
a transition in level statistics.

with (V;.sVii.9 as the correlations between different compo-
nents of the elements &f,

The distribution of the local Hamiltonian for the lowest Lan-
dau level can then be represented by @gwith parameters
IV. EXAMPLES b obtained from Eqs(56) and (57) [here u;=(ij;s) and

In this section, we consider two examples correspondingtz= (kI;9)]; see Appendix C for an example. A substitution
to 2nd and 3rd order matrix elements correlations ancf the b parameters in E(15) gives us the complexity pa-
provide the theoretical formulation for 2-point eigenvaluerameter governing the energy level dynamics in the lowest

correlations for the cases by using the Brownian ensembleandau level. As shown in Appendix C by a simple case
analogy. =2, the parameteris and, thereforéy, turn out to be a func-

tion of the disordered potentiat, V,, system length., as
well as magnetic field and can be varied by changing any
A. Quantum Hall system one of them.

Let H=Hy+V(r) be the single particle Hamiltonian for a The above discussion is valid for higher order Landau
disordered quantum Hall system withy, as the kinetic en- levels too, with the complexity parameter still described by
ergy of the electrons anil(r) as a space correlated disor- EQ. (15); however, the coefficienty, , are different for
dered potential, e.g{V(r)V(r')y=f(r,r") (with (V(r))=0). different Landau levelgsee Ref[13] for the matrix element

Using the Landau states,(r)=(r|nk) (the eigenstates of correlations of potentiaV). The rate of transition of level
Ho) as the basisH can be written sy = endn i statistics therefore differs, in general, from one Landau level
nkn’k’ =~ €n%,n’ %k k’

Ve WhereH o = (NKH[N'k') ande, = (n+1/2hw as to another. For weak magnetic fields, where various Landau

! . ) . ... levels cannot be considered as independentan still be
the eigenvalues oH,. The interaction between impurities
. i . represented by the ensemble EL. However, now the num-
results in a correlation of the matrix elements \éfand

; ber of coefficientd, ,, which contribute toY is much larger
therebyH [13]: Hamg . .
(due to correlations between levels in two different Landau

<Vn1k1;n2k2Vn3k3;n4k4> Ievels) . - .
In the absence of disorder, under the independent Landau
_ ’ o * , , / level approximation, all energy levels in a given Landau
= [ drdr r r r r)f(r,r’). ’ ’ . . .
f gk (1) Ui, (0 e (1) i g (1) ECE ) level are degenerate and matk=H, is a diagonal matrix

(54) with a Poisson behavior for its eigenvalughie to domi-
nance of zero spacingsThe switching of disorder removes
The parameter\ can now be determined if mean level the degeneracy and delocalizes the wave function if the im-
spacingA and the real-space correlations for the potentialpurities are interacting. The degree of delocalization depends
V are explicitly known. For example, consider the caseon the strength of impurity interactions with respect to the
when magnetic fieldB becomes much stronger than the magnetic field strengtiB. If the latter is strong enough to
disorder potential. The Hamiltonian matrkt in this case mix the levels in an energy range of many mean level spac-
is divided into various independent blockeach corres- ings (which corresponds to the limi =V), the energy lev-
ponding to a different Landau leyelnd the statistics of els ofH show a GUE behaviofThis is similar to the case of
energy states in each Landau level can be discussed indepestrongly interacting many body systems, e.g., the statistics of
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resonances in complex nuclei which can be well modeled by <UijkIUkIan
GOE or GUE[7].) Under an intermediate state of disorder,

therefore, the ensemble H lies between the Poisson ensemble :f BrBr s (r Pt
and GUE and can be modeled by E#). The level statistics 120 (1) Yalr ) iar2)
for this case can then be given by the one for a BE appearing « )
during aPoisson-GUE transition. The two point correlator X ol Yinr(12) iy () (1, 12)F(12,r) (37 ),

R, [12] for states in the lowest Landau level can therefore be (62)
given as

mnij>

with f(rq,r,) as the interaction between two fermions at po-
Ro(r; A) = Ry(r ;) sitions r; and r,. The HamiltonianH will therefore be a
4 (= 1 _ matrix with varying degree of correlations between its ele-
= —f dxf dzcog2mrx)exp - 8m?AX(1 + X + 2z\x)] ments and can be represented by ensemblgH). In ab-
o -1 sence of fermionic interaction, the matik=V and its sta-
(\’M(l +22&)> tistical properties depend on the dggree of disqrder. For
X , (59 example, in the presence of strong disorder, the eigenvalues
of V show a Poisson distribution with localized eigenfunc-
_ ) ) o tions[11,3,7. The weak disorder limit of/ shows a Wigner-
whereRzl(r,oo)-l—arf(wr)/wzr (the GUE limig; the above  pyqon distribution for its eigenvalues with extended eigen-
formulation was obtained for the BE in R¢fL2]. ~_ functions. Similarly in absence of disorddi=U and its
Let us now consider the case with weak magnetic fieldsagistical behavior is governed by the fermionic density in
where the interaction between various Landau levels cannQlyrious parts of the system. The presence of almost uniform
be ignored. The eigenvalue spectrumhgffor this case be-  formionic density in the system leads to delocalization of
haves as a uniform spectr3] (that is, an initial spectrum  gjgenfunctions ant) behaves like an ensemble of antisym-
of uniform spacing The switching of interacting-impurities 1 atric Hermitian matricegésee Ref[5] for details on anti-
potentialV again results in broadening of the wave f“”CtiO”S-symmetric random matrices However nonuniform elec-
In_the limit where i_mpqrity interactions are strong enough t0rqnic density in various parts of the systéthat is, stronger
mix energy levels in different Landau levelthat isH=V),  interactions in certain parts of the system as compared to
the eigenvalues oH show a GUE behavior. The varying giherg can result in localization of wave functions and
degree of the interaction between impurities thereforqhereby a Poisson behavior for the eigenvaluet of
leads to a transition of the level statistics from uniform |, the presence of both disorder as well as fermionic in-
spectrum-GUE behavior. The two point correlation for the teraction, the behavior dfl is governed by the intercompe-
level statistics at any intermediate stage of impurity interacsjtion between them. In this case, it is preferable to represent
tion can then be given by that of a BE appearing during thgy i the N=n? dimensional basis of two particle stat@s;
uniform spectrum-GUE transition: the choice of the basis results in appearance of the disorder
elements as the diagonal elementdHoénd fermionic inter-
Ro(r; A) = Ro(r; o) action elements as the off-diagonaléj|H|ij)=V;; and

=
1+X+ 2zVX

< 22 1 772 (ijH|kl)=U;jq. The changing strength of the fermionic inter-
=22 g®rd Af dx(1 - x)e 87 action in the presence of disordered potential subjects the
4= 0 level statistics to undergo a transition from the initial state
X[cog2mqr) — cog2(q+ X)r)], (60) (given by the statistics ol) to Wigner-Dyson statistics
(whenU=V). However, in the limit when the disorder po-
with A — oo corresponding to GUE limit. tential becomes negligible as compared to fermionic interac-
tions, the level statistics ¢f approaches that of antisymmet-
B. Disordered systems with fermionic interactions ric matrices. As obvious, the level statistics for all other

] o ] ) ~cases, corresponding to different strengths of disorder poten-
Consider a general Hamiltonian for spinless interactingja| and fermionic density, will lie on the transition curve

fermions from Poisor-Wigner-Dysor-antisymmetric ensembles.
1 Using Eq.(19) as the model for intermediate states, the level
H ZEVijaiTaj + ZE UijklaiTa]Taiak- (61)  Statistics for this case can then be described by BE lying
ij ijkl between Poisop-antisymmetric ensemble.

The ground state properties of electrons in nanoparticles
[Here the statefi)=al|0) describe a fixed basis ofi single-  or quantum dots, that is, finite systems of fermions interact-
particle states withv;; as matrix elements of the one body ing via Coulomb forces, are not yet fully understood. Using
Hamiltonian andUj;q as the antisymmetrized matrix ele- ensembleg19) or (32) as their model, the physical properties
ments of the two body interactidd. The presence of disor- of these systems can now be probed further and earlier ex-
der randomizes botkl andU. For example, fol as a white  perimental observations may be explained. For example, it
noise, its matrix elements are independently distributed ranhas been experimentally observed that the peak-spacing sta-
dom variables. However the fermionic interaction results intistics for an irregular quantum dot in Coulomb blockade
correlations among matrix elements 0f regime undergoes a crossover from Wigner-Dyson to Gauss-
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ian behavior as the strength of electron-electron interactionange of complex systems and can be helpful in theoretical
increase$1,2]. Within our formulation, the observed behav- formulation of many of their physical properties.

ior can be explained as follows. The single electron dynam-

ics inside a quantum dot of irregular shape is chaotic; the

level statistics of single particle Hamiltonidhcan therefore APPENDIX A: THE CHANGE OF EIGENVALUES

be modeled by the Wigner-Dyson behaVii@f. The addition AND EIGENFUNCTIONS

of more electrons switches the potential however, due to The eigenvalue equation of a complex Hermitian matrix
nongnlform electronlp density .dur|ng initial stages, the cor- g given byHU=UA with A as the matrix of eigenvalues
relation between various matrix elementsiofeed not be  ‘3nqy as the eigenvector matrix, unitary in nature. As is
the same. The statistical behavior of the quantum dot cagpioys, a slight variation of the matrix elementstofwill,
therefore be described by an ensemble given bBYE. AS i general, lead to variation of both the eigenvalues as well
electron density increasdd,dominates ove¥ and the level- ;< the eigenvectors and associated rates of change can be

statistics approaches the behavior of antisymmetric matricegyiqined as followssee Appendices A—E of Ref10] for

It is already known that the nearest-neighbor spacing distriz,q e details

bution for noncentral spacings in the spectrum of antisym- - aq) =~ .U H; U’ the rate of change of, with respect
metric Hermitian matrices behaves like a Gaussian distribug, Hy (WitHJ S refiarrri]ng to reals=1, and imaginarys=2
S ¥ 1 I}

tion [5]. The observed Gaussian behavior of the peali)arts ofH,) can be given as
spacings in the strong interaction limit is therefore well in W
agreement with theoretical expectations. Using ensemble o, %t X X
(19) as a model for the quantum dot Hamiltonian, the behav- P —[Un U= (= 1)°U, Uil (A1)
ior of peak spacings in the intermediate regime can be pre- ks Gk
dicted to be similar to _that ofa BE appearing during a C.rossilvheregk|:1+ad. This can further be used to obtain the fol-
over from GOE-antisymmetric ensembles. A detailed lowi .
o : R lowing relations:
quantitative analysis of such cases is still in progress and will

be published elsewhere. 2
In general, the size dependence of the paramétey, DD INn Heo= > HqUpUb = N (A2)
and the local mean level spacing for a system with k=l =1 MHir:s g nkn TN

e-e interaction is different from the noninteracting systems.
In interacting systems, therefore, the critical point of leveland
statistics, given by conditiolh =N-independent, can occur

at a disorder strengtlior energy different from the one 2

- ; Y- - _ 12)NN) W,
for noninteracting systems. This is consistent with the re- 2 0> o oM = 26mn. (A3)
sults given by renormalization group technigyi@8] which ksl s=1 P0 ks O Tklis

show that the introduction of interactions into quantum  ag obvious from Eq(A1), the second order change of an
dots can prloduce phase_ transmqns_ in the'l|m|t of weak d'seigenvalue with respect to a matrix element requires a
order, leading to behavior qualitatively different from the knowledge of the rate of change of one of the eigenvector

noninteracting case. Further, for one-dimensional noninterzomponents with respect td,,. The latter can again be ob-
acting systems, it is known that the wave functions are loained by using the eigenvalue equation,

calized even in a weak disorder limit. However, our formu-

lation indicates that the fermionic interaction may lead to 5y LSt 1 X X

extended states even in the one-dimensional disordered sys- e a2 Uprf Ui + (= DU, Uyl

tem; the implication is in agreement with earlier studies in kis Gkl mzn An ™ Am

this context16]. (A4)
Now by differentiating Eq(A1) with respect taH.s and

V. CONCLUSION by using Eq.(A4) we can show that
In summary we show that the level statistics of disordered 2 N 1
systems with interactions is governed by a single parameter, D 0> o =282 _ (A5)
namely, the rescaled complexity parametemote the level k=l s=1 Higs m A~ Am

statistics of noninteracting systems can also be described in
terms of A [10]. However the introduction of interactions
modifies the dependence df on system parameters which
can significantly affect the location of the critical point for o
the phase transitions and corresponding level statistics. olfFs ofi, j.

study also reveals a deep level of universality underlying

physical systems, namely, the Brownian ensembles as the APPENDIX B: SOLUTION OF EQ. (38)

statistical backbone of both interacting as well as noninter-

acting systems. This universality should be explored in full According to theory of partial differential equations
detail as it may reveal many new connections among a widéPDE) [14], the general solution of a linear PDE

For the real-symmetric case, the corresponding relations
can be obtained by using*=UT (as eigenvector matrix is
now orthogonalin Eg. (A1) and takingH;;.,=0 for all val-
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M o7 The set of Eqs(38) can similarly be solved for othey;
> Pi(Xy,Xo, ... Xy)— =R (B1) (j>2). For example, the solution of E¢38) for y, can be
i=1 % given by the functionF(vy, ..., v\m)=0 wherev;({b},yy)

is F(uy, U, u,)=0 whereF is an arbitrary function and =const are the independent solutions of following equality:
1 1 N

U (Xq, %o, ... Xy,Z)=C; (@ constant i=1,2,...n are inde- db db db d
pendent solutions of the following equation: L L Ll l( (B8)
fp(l) fp(2) fp(r) 0
dx,  dx d d dz
e e TR SR —. (B2) A solution, sayv,, of Eq. (B8) can now be given as
P, P, Py Pv R
e Note the functiorF being arbitrary, it can also be chosen D dbpzék) = const, (B9)
r,p(r)
F=> (u-c)=0. (B3) Wherez;k) are arbitrarily chosemM functions which satisfy
i the condition
i
The equations for varioug; in the set of Eq(38) are of > ng)fp: 0. (B10)
the same form as EqB2) and, therefore, can be solved as )

described above. Let us first consider the equatioryfpits ) ) ) ) ) ]
general solution can be given by a relation As is obvious, one possible choice fBF functions satisfy-

F(Uy,Us, ... ,uy) =0 where functiorF is arbitrary andy; are ~ ing the above condition iZ)9=0 for all p(r) which gives
the functions ofM parameters of sdi such thatu;({b},y;) Yk=const.

=¢; (with ¢;'s as constanjs The functionsy; are the inde- ~AS each solution of Eq(B8) is different from the other
pendent solutions of the equation only by a constant, the general solution ygrk> 1, can now
be given as
M:...:%:...%:m:dy (B4)
fo) fo2) for) b Y= 2 | dbz¥ + const. (B11)
r,p(r)

where the equality between ratios is implied for all possible
combinationsp(r) of r terms,r=1—n, with M as the total
number of combinations. It is easy to see that each of th
above ratios is equal tEr,p(r)zgl)dbp/E,,p(,)z(pl)fp where zi)l)
are arbitrary functions. EquatiofB4) can therefore be re- APPENDIX C: EXAMPLE FOR QUANTUM HALL CASE

Equation(B7) and Eq.(B11) together give the set of Eq.
é40).

written as Within independent Landau level approximation, the
o guantum Hall ensemble can be described by the probability
_ Er,p(r) zy dby density p(H) given by Eq.(1) with coefficientsb given by
dy1 = S A (BS) Egs.(57) and(58). However, it can further be simplified by
rpP P choosing the origin of energy at which makesb,=(H,)

=0. The matrix element distribution in the quantum Hall case

A solution, sayu, of Eq. (B5), or alternatively Eq(B4), can can now be described by a probability density

now be obtained by choosing the functi % such that the

right side of the above equation becomes an exact differen- M
tial: B(H,b)=Cexpl - > buyHHe,y (C1
M =1
U=y, - > | dbz’G,=const, (B6)  with C as the normalization constant

p(r)

PP 2 -1/2
where Glz[Eryp(r)zgl)hp]‘l. The general solution foy; can cl= f dHe 2Py, HuHi, = (H Det Bs) . (C2)
therefore be given by a combination of all possible functions =1

u obtained by using an arbitrary set ofunctions. It can be
shown that each such solution differs from the other only b
a constantu;=u;+const(this is due to equality of the two ",
ratios obtained by choosing two different setd of the

))—|ere B is the matrix of coefficients,, , . The parameters
b are related to second order correlathlH M):

functiong. They, can therefore be written as follows: (H,H,) :J H,.H, pdH (C3)
y1= > | db,z’G, + const (B7)
r.p(r) _ Mugpu, dINC (ca
which gives Eq(40) for k=1. 2 by,
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where 77, ,,=2 and 1 for pairgu,}={u,} and{us}#{u,},

respectively. LetQ® be the matrix with its elements as

the correlations between elements téf that is, (Q(S>)M1M2
:(4/77#1#2)<H#1HM2>. By using Eq.(C2) in Eq. (C4), we
get

_ dIn De{B"Y] _ Cof(By,u,) — (B)
b DefB"®]

Hotty?
L ]

(s) —
L]

(CH

where Co(B(S) ) implies the cofactor of the elemeB, ,
. _/'Llﬂ“Z . i ] 142
in the matrixB,. This impliesQ®=(B®)™. The matrixB®

for the QH case can therefore be obtained by inverting the

correlation matrixQ(S)z{inﬂ 1.
Let us consider the casd=2. Using theH, notation,

PHYSICAL REVIEW E 71, 026226(2005

dFi _ dy

Gk ba

WheredFkEEi,jz&k)dhj and GkEEi,jzi(jk)fij with zZ¥ as arbi-
trary functions. Using Eq(C7), the G, can be shown to be

Gy Y+ ) [(ya-4) - H3(ya+1)]

= 1- a0
+ (24 + 2)ax@ - ya(l - 43)
+ 162392 (ya— 16x)) - Zg9ax; (2yx, + a)/2].
(C10

various components of matrix elements can now be denoted™iary

as Hi=Hiiy, Hp=Hipg, H3z=Hzi, H4=Hi» Following
Eq. (60), the correlation matrbQ™Y in this case is a &3
matrix
a 0 2ax
QW= o a2x, 0 |,
2ax 0 a

(Co)

where a=(V3/ 2ICLyaV’ET), x=e 12" and XlzeaZ/Z, By
using the relatio(C5), B can be given as

1 o -2
W=———-| 0 8x(1-4 O C
al— 20 1 ) (C7)
-2X 0 1

Due to the Hermitian nature df, only its off-diagonal ele-
ments have imaginary parts. FdE2 case, therefordd? is
just a X 1 matrix, corresponding to correlatidhl,H,4) with
wa=(12:2): B?=b,,=(2(H,H,) L. The parameter setfor
this case can now be obtained by solving the condi#Qn
=31 1fi 9yl dbyj) = Biq, Where fi = by = (1/2) 2, 04CikCic
hereg,=2 for oddk and g,=1 for evenk. As discussed in
Appendix B, a solution of the condition can be given as

dbyy _ dby, _ dbys _dby, _ dby

fiu fio fig foo fg
_ dbys_ dbss _ dby, _ dy )
f32 1:33 f44 5k1

dF = 2 7/%db; =[(2]] + Z)dx, - 22§ + Z3})d(x0)
ij

+2(425 - Z)d(xe/a)], (C11)
wherex,=a }(1-4x?)". As bothdF; and G, are functions
of I, and o (througha and «), y; will turn out to be a
function of parametet; and o,

(1)

z; dF(ls,0)
= db; = | ———. C12
yl% h,—‘—Gl Gillo.0) (C12

Proceeding similarly foryk>2, a solution fory, can be
given as

V=2 | dbyzy, (C13
ij

wherez¥ satisfy the condition$,=0.

Note the conditionG,=0 is satisfied for a following
choice of2?: 22=-72, 72=-72 andZ3=272=0. They,
for this choice turns out to be a constant. Similarly the
condition G3=0 can be satisfied for a following choice
of Z29: (Z)+Z)1(ZY-77)=[4x8-ya(1-4A)]/[(ya-4)
—4(ya+1)x?] and Z)1z44=a3C(y+ax,/32)/64(yax,— 16).
Using thesez values in Eqg.(C13), one can obtairy; as a
function of o andl.. Note althoughy; varies with changing

The above equations can now be solved by making the ratioc andl., howeverXj;f;;(dys/db;)=0 and therefore/; does

exact differentia[following from Eq. (B5) of Appendix B,

not affect the evolution op(H).
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