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The complicated interactions in the presence of disorder lead to a correlated randomization of states. The
Hamiltonian as a result behaves like a multiparametric random matrix with correlated elements. We show that
the eigenvalue correlations of these matrices can be described by the single parametric Brownian ensembles.
The analogy helps us to reveal many important features of the level statistics in interacting systems, e.g., a
critical point behavior different from that of noninteracting systems, the possibility of extended states even in
one dimension, and a universal formulation of level correlations.
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I. INTRODUCTION

The theoretical formulation of physical properties of elec-
tronic systems is usually based on independent electron ap-
proximation. However, experiments on quantum dots as well
as extended semiconducting electron heterostructures show
that Coulomb interaction between electrons is by no means
small f1,2g. The influence of Coulomb interaction is particu-
larly strong in the presence of a disordered environment,
with bulk and mesoscopic systems both revealing new fea-
tures f4,7g. Examples include Coulomb blockade phenom-
ena, low energy anomalies in transport and thermodynamics
coefficients, non-Fermi liquid effects in effectively one-
dimensional structures, various manifestations of the Kondo
effects, the fractional quantum Hall effects, etc. A theory of
physical properties including electron electronse-ed interac-
tion is therefore very much required.

The presence of interactions along with disorder makes a
physical system so complex that its properties can be ana-
lyzed only by a statistical tool. In the past, the statistics of
single particle states of noninteracting systems with external
disorder potential has been well-modeled by the Wigner-
Dyson ensembles, also known as standard random matrix
ensemblessRMTd f5,3,7g. The ensembles have also been
used successfully to describe the statistical properties of the
high energy states of many body systems with no disorder,
e.g., nuclei, atoms, etc.f5,3,7g. The intuition suggests there-
fore a possibility of random matrix modeling of systems
when disorder and interactions are both present. Recent stud-
ies in this direction have led to two types of random matrix
models, however both impose specific conditions on nature
and degree ofe-e interactions as well as disorder in the sys-
tem f8,9g. In this paper, we consider a random matrix model
suitable for generic conditions for both disorder and interac-
tions and show that the spectral statistics can be described by
a mathematical formulation analogous to that of noninteract-
ing disordered systems. The parameter governing the
localization→delocalization transition however turns out to
be different in the two cases.

The complexity of many body interactions or external dis-
order potential associates a degree of uncertainty in the exact

determination of the Hamiltonian. As a result, somesor alld
elements of the Hamiltonian matrix behave like random vari-
ables. The distribution properties of the matrix elements are
governed by the nature of intèractions and disorder; their
distributions need not be the same, may or may not be cor-
related, and some of them can be nonrandom, too. For ex-
ample, a single particle Hamiltonian with a “white noise”
disorder potentialsthat is, noe-e interaction or impurity in-
teractiond can be modeled by a random matrix with uncorre-
lated elements. However the presence of local interactions
among impurities or electrons or both will result in a corre-
lated randomization of matrix elements of the Hamiltonian.
Unfortunately not much information for random matrices
with correlated elements has been available so far. Our ob-
jective in this study is to suggest a way to fill in this infor-
mation gap. Here we show that the eigenvalue distributions
of various ensembles, with correlated matrix elements and a
multiparametric probability density, appear as nonequilib-
rium stages of a Brownian type diffusion process. The dif-
fusing eigenvalues evolve with respect to a single parameter
which is a function of the correlation strengths between vari-
ous matrix elements. The parameter is therefore related to
complexity of the system represented by the ensemble and
can be termed as “complexity” parameter. The solution of the
diffusion equation for a given value of complexity parameter
gives, therefore, the distribution of eigenvalues, and thereby
their correlations, for corresponding system. As discussed
later, the diffusion equation can be solved by using its anal-
ogy with the one governing the evolution of Brownian en-
semblesf10g. The analogy also helps in theoretical formula-
tion of the level-density correlations of interacting disordered
systems.

The paper is organized as follows. In Sec. II, we derive
the diffusion equation for the matrix elements of the Hermit-
ian operators governing the dynamics in complex systems.
For a clear exposition of our technique, we first consider the
cases with 2nd and 3rd order matrix elements correlations
and generalize tonth order correlations later on. The diffu-
sion equation for the matrix elements is then used to obtain
the equation governing the evolution of the eigenvalues in
Sec. III. To maintain the flow of the discussion, only relevant
steps are given in Secs. II and III; the details can be found in
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the Appendices. As mentioned above, the evolution equation
for the eigenvalues turns out to be a very well-known equa-
tion and calculation of the eigenvalue correlations from the
equation has been discussed in detail many times. We there-
fore avoid the repetition but give a brief discussion to keep
the article self-contained. This is followed, in Sec. IV, by a
discussion of the application of our technique to two well-
known systems. We conclude in Sec. V by summarizing our
main results.

II. SINGLE PARAMETRIC EVOLUTION OF MATRIX
ELEMENTS

Let us consider a complex system represented by aN
3N Hermitian matrixH with Hkl=os=1

b sids−1Hkl;s as its ma-
trix elements. The subscripts to a variable refers to one of its
components withb as their total number. The parameterb
contains the information about underlying symmetry of the
system. For example, for systems with time-reversal symme-
try and integer angular momentum, the Hamiltonian in a ge-
neric representation is a real-symmetric matrix which gives
b=1. The Hamiltonians for a system without time reversal
symmetry are, in general, complex Hermitian which gives
b=2. Due to its Hermitian nature, the independent real pa-
rametersHkl;s, which determine all matrix elements ofH, are

M̃ =N+NsN−1db /2 in number. For notational simplification,
let us denote them byHm wherem;hkl ;sj is a single index
which can take a value from 1→M.

The elements ofH describe the overlap between various
states of the basis in whichH is represented. A complicated
nature of interactions or presence of disorder in the system
associates a deterministic uncertainty with the matrix ele-
mentsHm. As the interaction between various states is gov-
erned by the nature and complexity of the region, the ran-
domness associated with the elementsHm can be of various
types. In general, the complexity of a region can cause mul-
tiple interactions between basis states, resulting in correla-
tions between matrix elements. In this section, we consider
the cases which can be modeled by an ensemble described by
a probability densityr̃sH ,bd~e−FsHd with functionFsHd as a
sum over various combinations of the matrix elements ofH.

A. Correlated Gaussian case

A Gaussian ensemble of Hermitian matrices with corre-
lated elements can be described by a matrix elements distri-
bution

r̃sH,bd = C expF− o
m1=1

M

bm1
Hm1

− o
m1,m2=1

M

bm1m2
Hm1

Hm2G
= CrsH,bd, s1d

with C as a constant andb as the set of coefficientsbm1
and

bm1m2
. Here the subscripts to a coefficient are indicators of

the terms present in the product of which it is a coefficient.
Further, inom1,m2

, similar pairs are included only once.
The distribution parametersb2;m1,m2

are the measures of
correlations between pairs of the matrix elements:

kHm1
Hm2

l=] log C/]b2;m1m2
. In general, different system con-

ditions can give rise to different sets of distribution param-
etersb. A slight perturbation of the system due to a change in
its parameters perturbs the matrix elements and therefore the
probability densityrsH ,bd. In the following, we consider a
particular flow in the matrix space generated by an operator
L sdescribing the diffusion of the matrix elements with a
constant drift and confined by a quadratic potentiald,

L = o
m

]

]Hm
Fgm

2

]

]Hm

+ gHmG , s2d

wheregm=1+dm with dm=1 for m=skk;sd and dm=0 for m
=skl ;sd, kÞ l. The parameterg is arbitrary, giving the free-
dom to choose the end of the evolutionf10g. The choice of
the above form ofL is motivated by our desire to obtain the
equation governing the eigenvalue-dynamics in a well-
known mathematical form.

The evolution of the probability densityrsH ,bd, gener-
ated by operatorL in the matrix space, is related to a multi-
parametric flow inb space. This can be shown as follows.
The probability density being a function of bothH andb, the
rates of change ofr with variation of matrix elements and
parametersb can be given as

]r

]Hm1

= − Fbm1
+ o

m2

hm1m2

sm1d bm1m2
Hm2Gr, s3d

]r

]bm1m2

= − Hm1
Hm2

r, s4d

]r

]bm1

= − Hm1
r, s5d

wherehm1m2

sm1d is the frequency of occurrence of the termHm1

in the combinationHm1
Hm2

si.e., hm1m2

sm1d =2 for m1=m2 and 1
for m1Þm2d. With the help of Eqs.s3d ands4d, a drift in the
matrix space can be written in terms of a drift in parametric
space,

o
m1

Hm1

]r

]Hm1

= − Fo
m1

cm1
Hm1

r + o
m1,m2

cm1m2
Hm2

Hm1Gr

= o
m1

cm1

]r

]bm1

+ o
m1,m2

cm1m2

]r

]bm1m2

, s6d

wherec1;m=bm and cm1m2
=hm1m2

sm1d bm1m2
. Similarly a diffusion

in the matrix space can be expressed as a combination of
drifts in parametric space,
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]2r

]Hm1

2 = scm1

2 − cm1m1
dr + 2o

m2

cm1
cm1m2

Hm2

+ o
m2,m3

cm1m2
cm1m3

Hm2
Hm3

r s7d

=scm1

2 − cm1m1
dr − 2o

m2

cm1
cm1m2

]r

]bm2

− o
m2,m3

cm1m3
cm2m3

]r

]bm2m3

. s8d

A substitution of the above equalities in Eq.s2d gives us the
following,

Lr = Tr + C̃r, s9d

with C̃=om1
fg+sgm1

/2dscm1

2 −cm1m2
dg and T as the generator

of the dynamics in the parametric space,

T ; o
m1

fm1

]

]bm1

+ o
m1,m2

fm1m2

]

]bm1m2

. s10d

Here fm1
=gcm1

−om2
gm2

cm2
cm1m2

and fm1m2
=gcm1m2

−s1/2dom3
gm3

cm1m3
cm2m3

.
The above equation appears complicated, with many para-

metric derivatives present on its right side. However it is
possible to map the multiparametric flow in the
M-dimensionalb space to a single parametric drift in another
parametric space, sayy space, consisting of variablesyi, i

=1→M whereM =f3+M̃gM̃ /2. In other words, the genera-
tor T of the flow in theb space can be reduced to a partial
derivative with respect to just oney-space variable, sayy1:

Tsyfbgdr ; U ]r

]y1
U

y2,. . .,yM

. s11d

The desired transformationb→y required to convert Eq.
s10d into the forms11d can be obtained as follows. By using
the definition] /]x=ok=1

M s]yk/]xds] /]ykd, with x as variousb
parameters,Tsbd fEq. s10dg can be transformed in terms of
the derivatives with respect toy,

Tr = o
k

Ak
]r

]yk
, s12d

where

Ak ; o
m1

fm1

]yk

]bm1

+ o
m1,m2

fm1m2

]yk

]bm1m2

. s13d

Equations12d can be reduced in the desired form of Eq.s11d,
if the transformationb→y satisfies the following condition:

Ak = dk1 for k = 1→ M . s14d

The parametersy as a function ofb can now be obtained by
solving the set of conditionss14d,

y1 = o
m1

E dbm1
zm1

s1dG + o
m1,m2

E dbm1m2
zm1m2

s1d G + const,

s15d

whereG=fom1
zm1

s1dfm1
+om1,m2

zm1m2

s1d fm1m2
g−1 and the setzs1d of

the functionszm1

s1d, zm1m2

s1d are chosen such that the ratio

Fo
m1

zm1

s1ddbm1
+ o

m1m2

zm1m2

s1d dbm1m2GG s16d

is a complete differentialssee Appendix Bd. Note it is pos-
sible that the ratios16d can be made an exact differential for
different setszs1d which will lead to different solutions ofy.
However, any two such solutions fory are different from
each other only by a constantsAppendix Bd.

The conditionss14d further imply that parametersyk, k
.1 behave as the constants of the dynamicssgenerated byLd
in the matrix space,

yk = o
m1

E dbm1
zm1

skd + o
m1,m2

E dbm1m2
zm1m2

skd + const fork . 1,

s17d

with om1
zm1

skdfm1
+om1,m2

zm1m2

skd fm1m2
=0 for k.1.

The substitution of Eq.s11d in Eq. s9d gives the single
parametric evolution of the joint probability densityrsHd in
the matrix space

o
m

]

]Hm
F ]r̃

]Hm

+ gHmr̃G =
]r̃

]y1
, s18d

wherey1 is given by Eq.s15d. As the distribution parameters
depend on the complexity of the system,y1 can be termed as
the complexity parameter.

The parametric space transformationb→y maps the prob-
ability densityrsH ,bd to r(H ,ysbd). As a result,r depends

on various parametersyk, k=1→ Ñ. However, Eq.s18d im-
plies that the diffusion, generated by the operatorL in the
matrix space, is governed byy1 only; the rest of them,
namelyyk, k.1, remain constant during the evolution. Note
it is always possible to define a transformation from the set
b→y with yk, k.1 as constants of the dynamics generated
by L. This can be explained as follows. A matrix element,
sayHij , describes how a basis stateci interacts with statec j
throughH. This results in dependence of the matrix element
correlations and, thereby, of the setb, on the basis param-
eters, e.g., basis indices. As the basis remains fixed during
the evolution, the suitable functions of basis parameters can
be chosen to play the role ofyk, k.1. sNote a similar trans-
formation has been used to obtain a single parametric evolu-
tion of multiparametric Gaussian ensembles of Hermitian
matrices; see Ref.f10g for detailsd.

B. Non-Gaussian case with third order matrix
elements correlations

Let us consider an ensemble of Hermitian matrices with a
3rd correlations among its matrix elements, described by a
probability density
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r̃sH,bd = C expF− o
m1=1

M

bm1
Hm1

− o
m1,m2=1

M

bm1m2
Hm1

Hm2

− o
m1,m2,m3=1

M

bm1m2m3
Hm1

Hm2
Hm3G

= CrsH,bd. s19d

Again the parametersbm1m2m3
are the measures of cor-

relations among three matrix elements:kHm1
Hm2

Hm3
l

=] log C/]bm1m2m3
. Proceeding as in the Gaussian case, we

get

]r

]Hm1

= − Fcm1
+ o

m2

cm1m2
Hm2

+ o
m2,m3

cm1m2m3
Hm2

Hm3Gr,

s20d

]r

]bm1m2m3

= − Hm1
Hm2

Hm3
r. s21d

The derivatives]r /]bm and]r /]bm1m2
remain the same as in

the Gaussian casefgiven by Eqs.s4d and s5dg,

o
m1

Hm1

]r

]Hm1

= o
m1

cm1

]r

]bm1

+ o
m1,m2

cm1m2

]r

]bm1m2

+ o
m1,m2,m3

cm1m2m3

]r

]bm1m2m3

, s22d

wherecm1m2m3
=hm1m2m3

sm1d bm1m2m3
with hm1m2m3

sm1d as the frequency
of occurrence of the termHm1

in the combination
Hm1

Hm2
Hm3

. The second order derivative ofr with respect to
Hm can be calculated by differentiating Eq.s20d which, on
combining with Eq. s21d, again leads to the formLr̃

=sT+C̃dr. Here L is still given by Eq. s2d; however, the
generatorT now contains the first order parametric deriva-
tives as well as their products,

Tr = o
m1

fm1

]r

]bm1

+ o
m1,m2

fm1m2

]r

]bm1m2

+ o
m1,m2,m3

fm1m2m3

]r

]bm1m2m3

+ o
m1,m2,m3m4m5

cm1m2m3
cm1m4m5

1

r

]r

]bm2m3

]r

]bm4m5

, s23d

with fm1
=gcm1

−s1/2dom2
gm2

f2cm2
cm1m2

+cm2m2m1
shm2m2m1

sm1d

−1dg, fm1m2
=gcm1m2

−s1/2dom3
gm3

fcm1m3
cm2m3

+2cm3
cm1m2m3

g
and fm1m2m3

=gcm1m2m3
−om4

gm4
cm2m4

cm1m3m4
.

Similar to the Gaussian case, Eq.s23d can also be reduced
to a single parametric derivative, namely forms11d, by using
a transformation from the setb to another sety. The operator
T in this case transforms as

Tr = o
k

Ak
]r

]yk
+ o

i,k
Bik

]r

]yi

] log r

]yk
, s24d

where

Ak = o
m1

fm1

]yk

]bm1

+ o
m1,m2

fm1m2

]yk

]bm1m2

+ o
m1,m2,m3

fm1m2m3

]yk

]bm1m2m3

, s25d

Bik = o
m1,m2,m3m4m5

cm1m2m3
cm1m4m5

]yi

]bm2m3

]yk

]bm4m5

. s26d

The reduction of Eq.s24d for Tr to a single derivative]r /]y1
will impose the following conditions on the transformation
b→y:

Ak = Ndk1, s27d

Bik + Bki = 0. s28d

By solving conditionss27d, y1 can be obtained as a function
of the parametersb,

y1 = o
m1

E dbm1
zm1

s1dG + o
m1,m2

E dbm1m2
zm1m2

s1d G

+ o
m1,m2,m3

E dbm1m2m3
zm1m2m3

s1d G + const, s29d

where

G = fom1
zm1

s1dfm1
+ om1,m2

zm1m2

s1d fm1m2

+ om1m2m3
zm1m2m3

s1d fm1m2m3
g−1.

Again the choice of the functionszs1d is so as to make the
ratio

Fo
m1

zm1

s1ddbm1
+ o

m1m2

zm1m2

s1d dbm1m2
+ o

m1m2m3

zm1m2m3

s1d dbm1m2m3GG

s30d

a complete differential. However, the setzs1d in this case has
to satisfy an extra set of conditions given by Eq.s29d. Again
as in the Gaussian case, the parametersyj, j .1 behave as
constants of dynamics for this case, too,

yk = o
m1

E dbm1
zm1

skd + o
m1,m2

E dbm1m2
zm1m2

skd

+ o
m1,m2m3

E dbm1m2
zm1m2m3

skd for k . 1, s31d

with arbitrarily chosen functionszm
skd satisfying the constraint

om1
zm1

skdfm1
+om1,m2

zm1m2

skd fm1m2
+om1,m2

zm1m2m3

skd fm1m2m3
=0 for k

.1 as well as the conditions given by Eq.s28d.
Using theb→y transformation given by Eqs.s29d and

s31d, the dynamics ofrsHd with third order matrix element
correlations can again be described by Eq.s18d. Note that
although the evolution is governed by the same equation, the
complexity parameters are different for Gaussian and non-
Gaussian cases.
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C. General case

A generalized ensemble of Hermitian matrices with cor-
related elements can be described by a matrix elements dis-
tribution r̃sHd=CrsHd where

rsHd = p
r=1

n

expF− o
psrd

bpsrdSp
j=1

r

HmPj
DG , s32d

with C as a normalization constant. Here symbolpsrd refers
to a combination ofr elements chosen from a set of total

M̃ =N+NsN−1db /2 elements of uppersor lowerd diagonal
matrix; note the terms present in a given combination need
not be all different. TheP j=1

r HmPj
implies a product overr

terms present in thepth combination with coefficientbpsrd as
a measure of their correlation:kP j=1

r HmPj
l=] log C/]bpsrd.

Theopsrd is a sum over all possible combinationsftotal sM̃drg
of r elements chosen from a set of totalM̃ of them; the sum
includes only different combinations.fHenceforth subscript
psrd will be written asp only unless details are required for
clarification.g

Using Eq.s32d, the partial derivatives ofr in matrix space
and parametric space can be given as

]r

]Hm

= − o
r=1

n

o
p
FbpSp

j=1

r

Hmpj
Do

j=1

r ] log Hmpj

]Hm
Gr, s33d

]r

]bpsrd
= − Sp

j=1

r

HmPj
Dr. s34d

As a result, a drift in the matrix space can be related to a drift
in the parametric space:

o
m

Hm

]r

]Hm

= o
m

o
r,psrd

hp
smdbp

]r

]bp
, s35d

where the termhpsrd
smd =om=1

r dsmpm
;md counts the frequency of

occurrence of the elementHm in the pth combination ofr
elementsfdsmpj

,md=1 if mpj
=m and 0 ifmpj

Þmg. Similarly,
a diffusion in the matrix space is related to a nonlinear flow
in the parametric space,

]2r

]Hm
2 = o

r=1

n

o
psrd

hp
smdbpF o

r8.sn+2−rd
o

p8sr8d

hp8
smdbp8

]r

]bp+m

]r

]bp8+m

r−1

− o
r8øsn+2−rd

o
p8sr8d

hp8;mbp8
]r

]bp8+p−m2

+ shp
smd − 1d

]r

]bp−m2G . s36d

Here the notationA+B refers to a combination which con-
tains the elements of bothA andB. Similarly A−B indicates
dropping of all the elements ofB from A. Further the nota-
tion mk is used to denote a combinationHm

k sthat is, kth
power ofHmd.

Again, the matrix space flow generated by the operatorL
fEq. s2dg can be related to a parametric flow generated by the

operatorT, Lr=Tr+C̃r, whereT is now given by

Tr ; o
m

gm

2 o
r=1

n

o
psrd
F o

r8.sn+2−rd

m

o
p8sr8d

hpp8
] log r

]bp8
+ fpG ]r

]bp
,

s37d

with

hpp8 = bubu8Fo
m

gmhu
smdhu8

smdG
and

fp = − or8,p8sr8d bp8bqFo
m

gmhp8
smdhq

smdG
+ Fo

m

hv
smdgmshv

smd − 1dGbv + 2gFo
m

hp
smdGbp.

Here q refers to a combination ofr1=r8−r +2 elements,
such thatqsr1d;p8sr8d−psrd+skld2. Similarly u,u8,v refer
to combinationsusr0d=psrd+1, usr1d=p8sr8d+1 and vsr2d
=psrd+2 of r0=r +1, r1=r +1, and r2=r +2 elements,
respectively.

The desired transformationb→y required to convert Eq.
s37d into form Tsyfbgdr;]r /]y1 can be obtained as follows.
The substitution of] /]bpsrd=ok=1

M Dkjs] /]ykd in Eq. s37d with
Dkj;]yk/]bpsrd transformsT in the form of Eq.s24d where
Ak andBik are now given as

Aksy,bd = o
r

o
psrd

fpDkp, s38d

Biksy,bd = o
r,psrd

o
r8,p8sr8d

hpp8sxdDipDkp8. s39d

Again, for desired reduction ofT to ]r /]y1, the transforma-
tion b→y should satisfy conditions given by Eqs.s27d and
s28d. The conditionss27d can then be solved to obtain the
variables in sety as functions of variable in setb ssee Ap-
pendix Bd

yk = o
r,psrd

E dbpzp
skdf1 − dk1 + Gkg + const, s40d

with Gk=dk1for,psrdzp
s1dfpg−1 and zp

skd as arbitrary functions
which makeor,psrddbpzp

skdf1+sG−1ddk1g an exact differential

and satisfy the constraintor,r8opsrd,p8sr8dzp
sidz

p8
skd

fpp8G1
2=0 fthe

latter is required by the conditionss39dg.
We find, therefore, that the diffusion of probability density

for ensembles of Hermitian operators with correlated matrix
elementssany orderd, is governed by a single parametery1
with evolution described by Eq.s18d. The eigenvalue statis-
tics of the above ensembles can therefore be studied by an
exact diagonalization of Eq.s18d.

III. SINGLE PARAMETRIC EVOLUTION
OF EIGENVALUES

The eigenvalue equation for the matrixH can be given
asHU=lIU with lI as the diagonal matrix with eigenvalues
li of H as its matrix elements andU as the eigenvector
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matrix sunitary for complex Hermitian case and ortho-
gonal for real-symmetric cased. The probability density
PsEI ,y,bd of finding eigenvaluesli betweenEi and Ei +dEi

at a givenY can then be obtained from the matrix elements
distribution,

PsEI ,yfbgd =E p
i=1

N

dsEi − lidr̃sH,yfbgddH. s41d

HereEI refers to a diagonal matrix with elementsE1, . . . ,EN.
As the Y;y1 dependence ofP in Eq. s41d enters only
throughr, a derivative ofP with respect toY can be written
as follows:

]P

]Y
=E p

i=1

N

dsEi − lid
]r̃

]Y
dH. s42d

The diffusion equation forr̃, namely Eq.s18d, can now be
used to rewrite Eq.s42d as

]P

]Y
= I1 + I2, s43d

where

I1 = go
m
E dsE − ld

]sHmr̃d
]Hm

dH, s44d

I2 = o
m
E p

i=1

N

dsEi − lid
]2r̃

]Hm
2 dH. s45d

The integral I1 can be simplified by using integration by
parts

I1 = − go
m
E F ]

]Hm
p
i=1

N

dsEi − lidGHmr̃dH s46d

=go
n=1

N
]

]En
E p

i=1

N

dsEi − lidFo
m

]ln

]Hm

HmGr̃dH.

s47d

A further simplification of the above equation requires a
knowledge of the rate of change of eigenvalues ofH due to
a small change in its matrix elements. The rate can be ob-
tained by using the eigenvalue equation for matrixH along
with the unitarysor orthogonal for real-symmetricHd nature
of its eigenvectorsssee Appendix Ad. Using Eq.sA2d of Ap-
pendix A in Eq.s47d we get

I1 = go
n

]

]En
sEnPd. s48d

The second term can similarly be rewritten as follows:

I2 = o
n

]

]En
o
m

gm

2
E ]

]Hm
Sp

i

dsmi − lid
]ln

]Hm
Dr̃dH s49d

=o
m,n

]

]EnEm
E p

i

dsEi − lidFo
m

gm

2

]lm

]Hm

]ln

]Hm
Gr̃dH

− o
m

]

]En
E p

i

dsEi − lidFo
m

gm

2

]2ln

]Hm
2 Gr̃dH. s50d

Now by using Eqs.sA3d andsA5d of Appendix A, I2 can be
expressed in terms of eigenvalue derivatives ofr,

I2 = o
n

]2P

]En
2 + o

n

]

]En
F o

mÞn

bP

Em − En
G . s51d

A substitution ofI1 and I2, given by Eqs.s47d and s51d, in
Eq. s43d leads an equation describing the single parametric
evolution of the eigenvalues of ensemblersHd,

]P

]Y
= o

n

]

]En
F ]

]En
+ o

mÞn

b

Em − En
+ gEnGP. s52d

Equations52d describes the evolution of the eigenvalue den-
sity PsEI ,yfbgd; PsEI ,Y,y2, . . . ,yMd due to variation of the
parameterY from an arbitrary initial state, sayPsEI 0,yfb0gd
; PsEI 0,Y0,y2, . . . ,yMd occurring atY=Y0. Note here that the
parametersyj s j .1d, being constants of motion, have the
same value for both initial ensemblersH0,b0d as well as
rsH ,bd. The evolution of the eigenvalues tends to a steady
state in limit]P/]Y→0 or Y→`. The solution of Eq.s52d
in the limit is a Wigner-Dyson ensemblef7g: PsEI d=Pi, juEi

−Ejube−sg/2dokEk
2

sthus a GOE forb=1 and a GUE forb=2d.
Note, under certain conditions, the steady state solution
may also correspond to the eigenvalue distribution of an en-
semble of antisymmetric Hermitian matrices. A knowl-
edge of the solution of Eq.s52d can now help us in de-
termining the n-level density correlationsRn, defined
as RnsE1,E2, . . . ,En;Yd=fN! / sN−nd!geP j=n+1

N dEjPsEI ;Y
−Y0d. The first order correlationR1 is also known as mean
level density and its inverse gives the mean level spacingD
of the full spectrumsthat is, average of spacings in full
length of the spectrumd. By a direct integration, Eq.s52d can
also be used to study the evolution ofRn with changing com-
plexity of the system.

Equations52d is applicable for arbitrary values of the co-
efficientsb; it is therefore valid for the case of uncorrelated
Gaussian ensembles too. The latter have been shown to be
good models for noninteracting systemsf7g. Within random
matrix framework, therefore, we find that the energy levels
of both systems, interacting as well as noninteracting, un-
dergo a same diffusion process with changing system param-
eters. As a result, the level statisticssand related physical
propertiesd in the two cases can be described by the same
mathematical formulation. However note that, due to differ-
ent complexity parameters in general, the rate of evolution is
different in the two cases.
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The advantages of a single parametric formulation of the
evolution of eigenvalues is manifold and have been dis-
cussed in detail in Ref.f10g in the context of noninteracting
systemssor uncorrelated ensemblesd; the similarity of Eq.
s52d with that of Eq.s17d of Ref. f10g allows us to use the
discussion given in Secs. I D, I E, and II of Ref.f10g for the
correlated ensembles tooswith m replaced byEd. However,
for completeness sake, we briefly review it here again. Equa-
tion s52d is similar to the equation governing the evolution of
eigenvalues in the Dyson’s Brownian motion model which
was originally introduced by Dyson to describe the
eigenvalue-dynamics of an ensemble of Hermitian matrices
subjected to random perturbation; the nonequilibrium states
of this model are known as Brownian ensemblesssee Chap.
8 of Ref. f5gd. Later on it was shown that when an ensemble
H0 sfixed or randomd is subjected to a random perturbation,
of strengthÎY−Y0, by a standard random matrix ensembleV
sdescribed by a probability densitye−sg/2dTr V2

d, the resulting
ensembleH=H0+sÎY−Y0dV behaves like a Brownian en-
semblesBEd ssee Chap. 14 of Ref.f5g, Chap. 6 of Refs.
f6,12g andf10gd. HereH0 andV may belong to a same sym-
metry class, withÎY−Y0 governing the parametric eigen-
value dynamics, or different symmetry classes withÎY−Y0
as a parameter for symmetry admixing transitions. The sta-
tistical properties of BE depend only on the parameter
ÎY−Y0 besides underlying symmetry and many of their cor-
relations are already knownf12g.

As discussed in Ref.f12g, the mean level densityR1 of a
BE changes from an initial state to a semicircular formstypi-
cal of Wigner-Dyson ensemblesd at the scale ofgsY−Y0d
.NDl

2 with DlsE,Yd as the local mean level spacing at en-
ergy E; its evolution can therefore be described in terms of
the parametersY−Y0d. However, the transition of level-
density correlations to equilibrium, withsY−Y0d as the evo-
lution parameter, is rapid, discontinuous for infinite dimen-
sions of matricesf12g. For smallY and largeN, a smooth
crossover can be seen in terms of a rescaled parameterLsEd:

LsEd = guY − Y0u/Dl
2. s53d

The limitsL→0 andL→` correspond to the level statistics
approaching the initial state and Wigner-Dyson ensembles,
respectively. As obvious from the definition ofL, an inter-
mediate state between two limits occurs when the perturba-
tion ÎY−Y0 mixes levels in a finite energy range ofr local
mean level spacings:r .ÎY−Y0/Dh, 0, r ,N. For finite
size BE,L varies smoothly with changingY−Y0 which re-
sults in a continuous family of BEs, parametrized byL.
However, the level statistics for the large BEssize N→`d
can be divided into three regions.

sid Initial regime:sY−Y0dDl
−2→ fsN−1d. If the local mean

level spacingDl increases with sizeN at a rate faster than
that of ÎY−Y0, the perturbation will mix fewer number of
levels as system size increases. The level statistics therefore
approaches its initial state in the infinite size limit.

sii d WD regime:sY−Y0dDl
−2→ fsNd. Due to change inDh

with sizeN being slower than that ofÎY−Y0d, even a small
change in complexity parameter in this case is capable of
mixing the levels in an increasing energy range of many

local mean level spacings. This results in an increasing de-
localization of eigenfunctions and Wigner-Dyson behavior of
level statistics.

siii d Critical regime.sY−Y0dDl
−2= fsN0d=a=a const. The

perturbation in this case mixes only a finitesnonzerod, fixed
number of levels even when the system is growing in size.
The finite, nonzeroL value in limit N→` therefore gives
rise to a third statistics, intermediate between initial en-
semble and Wigner-Dyson ensemble, which is known as the
critical Brownian ensemblesCBEd. This being the case for
arbitrary values ofa snonzero and finited, an infinite family
of critical BE, characterized bya, can occur during transition
from initial ensemble to Wigner-Dyson ensembles.

The same evolution equations ofP for correlated en-
sembles and BE imply a similarity in their eigenvalue distri-
butions for allY values, under similar initial conditionsfthat
is, PsEI ,Y0d same for both the casesg. As a result, one obtains
the analogous evolution equations for their correlationsRn,
too fsee Eq.s16d of Ref. f12gg. The mean level densityR1 of
a correlated ensemble can therefore be given by the mean
level density of a BE with samesY−Y0d value and belonging
to a same symmetry classsas that of correlated ensembled.
Further the analogy of evolutions of higher order correlations
sn.1d in the two cases impliessid the discontinuity of tran-
sition of Rn for infinite size correlated ensembles andsii d a
smooth crossover ofRn for finite correlated ensembles. The
crossover parameter for correlated ensembles can again be
defined by Eq.s54d where nowY−Y0 is the complexity pa-
rameter of the correlated ensemble andDl is its local mean
level spacing. Note, in the case ofd-dimensional disordered
systems of linear sizeL, the number of states in a volume of
linear dimensionz in d dimensions isns0dzd with ns0d as the
density of states at Fermi level andz as the localization
length. Consequently, the typical energy separation between
such states isDlsE,Yd=(ns0dzd)−1. Similarly the mean level
spacing of states in the full length of the spectrum is
DsE,Yd=(ns0dLd)−1. For disordered systems, the local mean
level spacingDl can therefore be expressed in terms of the
mean level densityR1 asDl =sL /zddR1

−1.
The parameterL, being a function of the distribution pa-

rameters of the matrix elements, is sensitive to the changes in
the system parameters, due to their influence on the system
interactions and their uncertainties. Some examples of such
system parameters are disorder, dimensionality, boundary
and topological conditions, system size, etc. The presence of
disorder randomizes the interactions in the system with de-
gree of disorder affecting the distribution parametersb and
consequentlyL. The dependence ofL on dimensionality and
boundary conditions can be explained by using a simple ex-
ample. Consider aN3N lattice with a Gaussian site disorder
as well as a Gaussian type random interaction between
nearest-neighbor sites. The lattice HamiltonianH, in site rep-
resentation, is a sparse matrix with onlysZ+1dN nonzero,
independently distributed matrix elements; hereZ is the
number of nearest neighbors of a site. Consequently only
sZ+1dN b parameterssout of N2d contribute toY. As the
coordination numberZ is different for different dimensions
and boundaries of the lattice, theZ dependence ofY results
in its dependence on the dimensionality as well as boundary

RANDOM MATRICES WITH CORRELATED ELEMENTS:… PHYSICAL REVIEW E 71, 026226s2005d

026226-7



conditions of the system. Further the local mean level spac-
ing is also sensitive to the dimensionality as well as the
boundary conditions. A variation of any of the latter param-
eters can affect bothDl andY and thereforeL; ssee also Ref.
f11g where the dependence ofL on system parameters is
explained by considering an example of Anderson Hamil-
toniand.

The size dependence ofL also plays a crucial role in
determining the level statistics of the correlated ensemble in
the crossover regime. In general, bothY−Y0 as well as the
local mean level density are the functions of system sizeN
which results inN dependence ofL. As a consequence, the
level statistics in finite systems smoothly approaches one of
the two end points, namely,L→0 or L→`, with increasing
system size. However, as in the BE case, the variation ofL
in infinite correlated ensembles may lead to an abrupt tran-
sition, with its critical point given by the conditionL=size
independent. As in the BE case, the size independence ofL
at the critical point results in a level statistics different from
the two end points. Note if the size dependence ofDl

2 in a
correlated ensemble remains different from that ofY−Y0 un-
der all complexity conditions, the system will never undergo
a transition in level statistics.

IV. EXAMPLES

In this section, we consider two examples corresponding
to 2nd and 3rd order matrix elements correlations and
provide the theoretical formulation for 2-point eigenvalue
correlations for the cases by using the Brownian ensemble
analogy.

A. Quantum Hall system

Let H=H0+Vsr d be the single particle Hamiltonian for a
disordered quantum Hall system withH0 as the kinetic en-
ergy of the electrons andVsr d as a space correlated disor-
dered potential, e.g.,kVsr dVsr 8dl= fsr ,r 8d swith kVsr dl=0d.
Using the Landau statescnksrd;kr unkl sthe eigenstates of
H0d as the basis,H can be written asHnk;n8k8=endn,n8dk,k8
+Vnk;n8k8 whereHnk;n8k8;knkuHun8k8l anden=sn+1/2d"v as
the eigenvalues ofH0. The interaction between impurities
results in a correlation of the matrix elements ofV and
therebyH f13g:

kVn1k1;n2k2
Vn3k3;n4k4

l

=E drdr 8cn1k1

* sr dcn2k2
sr dcn3k3

* sr 8dcn4k4
sr 8dfsr ,r 8d.

s54d

The parameterL can now be determined if mean level
spacingD and the real-space correlations for the potential
V are explicitly known. For example, consider the case
when magnetic fieldB becomes much stronger than the
disorder potential. The Hamiltonian matrixH in this case
is divided into various independent blocksseach corres-
ponding to a different Landau leveld and the statistics of
energy states in each Landau level can be discussed indepen-

dently f13g. For a Gaussian type disorderkVsr dVsr 8dl
=sV0

2/2ps2de−ur − r8u2/2s2
, the matrix element correlations in

the lowest Landau leveln=0 can be given askV0i;0jV0k;0ll
;kVijVkll, where

kVijVkll = sV0
2/lcLyaÎ2pddsi − j ,l − kde−si − jd2a2/2e−si − kd2/2a2

,

s55d

with a2=s1+s2/ lc
2d as a measure of the correlation length of

the potential relative to the magnetic lengthlc=s" /eBd1/2

f13g. Using the notationH0k;0l ;Hkl, the distribution param-
eters of the matrix elements of the Hamiltonian in the Lan-
dau leveln=0 can be given as

kHijl = e0di j , s56d

kHij ;sHkl;sl = e0
2di jdkl + kVij ;sVkl;sl, s57d

with kVij ;sVkl;sl as the correlations between different compo-
nents of the elements ofV,

kVij ;sVkl;s8l =
1

2
fkVijVlkl + s− 1ds−1kVijVkllgdss8. s58d

The distribution of the local Hamiltonian for the lowest Lan-
dau level can then be represented by Eq.s1d with parameters
b obtained from Eqs.s56d and s57d fhere m1;si j ;sd and
m2;skl ;sdg; see Appendix C for an example. A substitution
of the b parameters in Eq.s15d gives us the complexity pa-
rameter governing the energy level dynamics in the lowest
Landau level. As shown in Appendix C by a simple caseN
=2, the parametersb and, thereforeY, turn out to be a func-
tion of the disordered potentiala, V0, system lengthLy as
well as magnetic fieldB and can be varied by changing any
one of them.

The above discussion is valid for higher order Landau
levels too, with the complexity parameter still described by
Eq. s15d; however, the coefficientsbm1m2

are different for
different Landau levelsssee Ref.f13g for the matrix element
correlations of potentialVd. The rate of transition of level
statistics therefore differs, in general, from one Landau level
to another. For weak magnetic fields, where various Landau
levels cannot be considered as independent,H can still be
represented by the ensemble Eq.s1d. However, now the num-
ber of coefficientsbm1m2

which contribute toY is much larger
sdue to correlations between levels in two different Landau
levelsd.

In the absence of disorder, under the independent Landau
level approximation, all energy levels in a given Landau
level are degenerate and matrixH=H0 is a diagonal matrix
with a Poisson behavior for its eigenvaluessdue to domi-
nance of zero spacingsd. The switching of disorder removes
the degeneracy and delocalizes the wave function if the im-
purities are interacting. The degree of delocalization depends
on the strength of impurity interactions with respect to the
magnetic field strengthB. If the latter is strong enough to
mix the levels in an energy range of many mean level spac-
ings swhich corresponds to the limitH<Vd, the energy lev-
els ofH show a GUE behavior.sThis is similar to the case of
strongly interacting many body systems, e.g., the statistics of
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resonances in complex nuclei which can be well modeled by
GOE or GUEf7g.d Under an intermediate state of disorder,
therefore, the ensemble H lies between the Poisson ensemble
and GUE and can be modeled by Eq.s1d. The level statistics
for this case can then be given by the one for a BE appearing
during aPoisson→GUE transition. The two point correlator
R2 f12g for states in the lowest Landau level can therefore be
given as

R2sr ;Ld − R2sr ;`d

=
4

p
E

0

`

dxE
−1

1

dzcoss2prxdexpf− 8p2Lxs1 + x + 2zÎxdg

3SÎs1 − z2ds1 + 2zÎxd

1 + x + 2zÎx
D , s59d

whereR2sr ,`d=1−sin2sprd /p2r2 sthe GUE limitd; the above
formulation was obtained for the BE in Ref.f12g.

Let us now consider the case with weak magnetic fields
where the interaction between various Landau levels cannot
be ignored. The eigenvalue spectrum ofH0 for this case be-
haves as a uniform spectrumf13g sthat is, an initial spectrum
of uniform spacingd. The switching of interacting-impurities
potentialV again results in broadening of the wave functions.
In the limit where impurity interactions are strong enough to
mix energy levels in different Landau levelssthat isH<Vd,
the eigenvalues ofH show a GUE behavior. The varying
degree of the interaction between impurities therefore
leads to a transition of the level statistics from uniform
spectrum→GUE behavior. The two point correlation for the
level statistics at any intermediate stage of impurity interac-
tion can then be given by that of a BE appearing during the
uniform spectrum→GUE transition:

R2sr ;Ld − R2sr ;`d

= 2 o
q=−`

`

e−8p2q2LE
0

1

dxs1 − xde−8p2qxL

3fcoss2pqrd − cos„2psq + xdr…g, s60d

with L→` corresponding to GUE limit.

B. Disordered systems with fermionic interactions

Consider a general Hamiltonian for spinless interacting
fermions

H = o
i j

Vijai
†aj +

1

4o
i jkl

Uijklai
†aj

†alak. s61d

fHere the statesuil=ai
†u0l describe a fixed basis ofm single-

particle states withVij as matrix elements of the one body
Hamiltonian andUijkl as the antisymmetrized matrix ele-
ments of the two body interactionU. The presence of disor-
der randomizes bothV andU. For example, forV as a white
noise, its matrix elements are independently distributed ran-
dom variables. However the fermionic interaction results in
correlations among matrix elements ofU:

kUijklUklmnUmnijl

=E d3r1d
3r2d

3r3ci j
* sr1dcklsr1dckl

* sr2d

3cmnsr2dcmn
* sr3dci jsr1dfsr1,r2dfsr2,r3dfsr3,r1d,

s62d

with fsr 1,r 2d as the interaction between two fermions at po-
sitions r 1 and r 2. The HamiltonianH will therefore be a
matrix with varying degree of correlations between its ele-
ments and can be represented by ensemble Eq.s19d. In ab-
sence of fermionic interaction, the matrixH=V and its sta-
tistical properties depend on the degree of disorder. For
example, in the presence of strong disorder, the eigenvalues
of V show a Poisson distribution with localized eigenfunc-
tions f11,3,7g. The weak disorder limit ofV shows a Wigner-
Dyson distribution for its eigenvalues with extended eigen-
functions. Similarly in absence of disorder,H=U and its
statistical behavior is governed by the fermionic density in
various parts of the system. The presence of almost uniform
fermionic density in the system leads to delocalization of
eigenfunctions andU behaves like an ensemble of antisym-
metric Hermitian matricesssee Ref.f5g for details on anti-
symmetric random matricesd. However nonuniform elec-
tronic density in various parts of the systemsthat is, stronger
interactions in certain parts of the system as compared to
othersd can result in localization of wave functions and
thereby a Poisson behavior for the eigenvalues ofU.

In the presence of both disorder as well as fermionic in-
teraction, the behavior ofH is governed by the intercompe-
tition between them. In this case, it is preferable to represent
H in the N=m2 dimensional basis of two particle statesui j l;
the choice of the basis results in appearance of the disorder
elements as the diagonal elements ofH and fermionic inter-
action elements as the off-diagonals:ki j uHui j l=Vij and
ki j uHukll=Uijkl . The changing strength of the fermionic inter-
action in the presence of disordered potential subjects the
level statistics to undergo a transition from the initial state
sgiven by the statistics ofVd to Wigner-Dyson statistics
swhen U.Vd. However, in the limit when the disorder po-
tential becomes negligible as compared to fermionic interac-
tions, the level statistics ofH approaches that of antisymmet-
ric matrices. As obvious, the level statistics for all other
cases, corresponding to different strengths of disorder poten-
tial and fermionic density, will lie on the transition curve
from Poison→Wigner-Dyson→antisymmetric ensembles.
Using Eq.s19d as the model for intermediate states, the level
statistics for this case can then be described by BE lying
between Poison→antisymmetric ensemble.

The ground state properties of electrons in nanoparticles
or quantum dots, that is, finite systems of fermions interact-
ing via Coulomb forces, are not yet fully understood. Using
ensembles19d or s32d as their model, the physical properties
of these systems can now be probed further and earlier ex-
perimental observations may be explained. For example, it
has been experimentally observed that the peak-spacing sta-
tistics for an irregular quantum dot in Coulomb blockade
regime undergoes a crossover from Wigner-Dyson to Gauss-
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ian behavior as the strength of electron-electron interaction
increasesf1,2g. Within our formulation, the observed behav-
ior can be explained as follows. The single electron dynam-
ics inside a quantum dot of irregular shape is chaotic; the
level statistics of single particle HamiltonianV can therefore
be modeled by the Wigner-Dyson behaviorf3g. The addition
of more electrons switches the potentialU, however, due to
nonuniform electronic density during initial stages, the cor-
relation between various matrix elements ofU need not be
the same. The statistical behavior of the quantum dot can
therefore be described by an ensemble given by Eq.s19d. As
electron density increases,U dominates overV and the level-
statistics approaches the behavior of antisymmetric matrices.
It is already known that the nearest-neighbor spacing distri-
bution for noncentral spacings in the spectrum of antisym-
metric Hermitian matrices behaves like a Gaussian distribu-
tion f5g. The observed Gaussian behavior of the peak
spacings in the strong interaction limit is therefore well in
agreement with theoretical expectations. Using ensemble
s19d as a model for the quantum dot Hamiltonian, the behav-
ior of peak spacings in the intermediate regime can be pre-
dicted to be similar to that of a BE appearing during a cross-
over from GOE→antisymmetric ensembles. A detailed
quantitative analysis of such cases is still in progress and will
be published elsewhere.

In general, the size dependence of the parameterY−Y0
and the local mean level spacingDl for a system with
e-e interaction is different from the noninteracting systems.
In interacting systems, therefore, the critical point of level
statistics, given by conditionL=N−independent, can occur
at a disorder strengthsor energyd different from the one
for noninteracting systems. This is consistent with the re-
sults given by renormalization group techniquesf15g which
show that the introduction of interactions into quantum
dots can produce phase transitions in the limit of weak dis-
order, leading to behavior qualitatively different from the
noninteracting case. Further, for one-dimensional noninter-
acting systems, it is known that the wave functions are lo-
calized even in a weak disorder limit. However, our formu-
lation indicates that the fermionic interaction may lead to
extended states even in the one-dimensional disordered sys-
tem; the implication is in agreement with earlier studies in
this contextf16g.

V. CONCLUSION

In summary we show that the level statistics of disordered
systems with interactions is governed by a single parameter,
namely, the rescaled complexity parameterL. Note the level
statistics of noninteracting systems can also be described in
terms of L f10g. However the introduction of interactions
modifies the dependence ofL on system parameters which
can significantly affect the location of the critical point for
the phase transitions and corresponding level statistics. Our
study also reveals a deep level of universality underlying
physical systems, namely, the Brownian ensembles as the
statistical backbone of both interacting as well as noninter-
acting systems. This universality should be explored in full
detail as it may reveal many new connections among a wide

range of complex systems and can be helpful in theoretical
formulation of many of their physical properties.

APPENDIX A: THE CHANGE OF EIGENVALUES
AND EIGENFUNCTIONS

The eigenvalue equation of a complex Hermitian matrix
H is given byHU=UL with L as the matrix of eigenvalues
ln andU as the eigenvector matrix, unitary in nature. As is
obvious, a slight variation of the matrix elements ofH will,
in general, lead to variation of both the eigenvalues as well
as the eigenvectors and associated rates of change can be
obtained as followsssee Appendices A–E of Ref.f10g for
more detailsd.

As ln=oi,jUniHijUnj
* , the rate of change ofln with respect

to Hkl;s swith s referring to real,s=1, and imaginary,s=2,
parts ofHkld can be given as

]ln

]Hkl;s
=

is−1

gkl
fUlnUkn

* − s− 1dsUln
* Ukng, sA1d

wheregkl=1+dkl. This can further be used to obtain the fol-
lowing relations:

o
køl

o
s=1

2
]ln

]Hkl;s
Hkl;s = o

k,l
HklUlnUkn

* = ln sA2d

and

o
køl

gklo
s=1

2
]ln

]Hkl;s

]lm

]Hkl;s
= 2dmn. sA3d

As obvious from Eq.sA1d, the second order change of an
eigenvalue with respect to a matrix element requires a
knowledge of the rate of change of one of the eigenvector
components with respect toHkl. The latter can again be ob-
tained by using the eigenvalue equation,

]Upn

]Hkl;s
=

is−1

gkl
o
mÞn

1

ln − lm
UpmfUkm

* Uln + s− 1ds+1Ulm
* Ukng.

sA4d

Now by differentiating Eq.sA1d with respect toHkl;s and
by using Eq.sA4d we can show that

o
køl

gklo
s=1

2
]2ln

]Hkl;s
2 = 2bo

m

1

ln − lm
. sA5d

For the real-symmetric case, the corresponding relations
can be obtained by usingU+=UT sas eigenvector matrix is
now orthogonald in Eq. sA1d and takingHij ;2=0 for all val-
ues ofi , j .

APPENDIX B: SOLUTION OF EQ. (38)

According to theory of partial differential equations
sPDEd f14g, the general solution of a linear PDE
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o
i=1

M

Pisx1,x2, . . . ,xMd
]Z

]xi
= R sB1d

is Fsu1,u2, . . . ,und=0 whereF is an arbitrary function and
uisx1,x2, . . . ,xn,Zd=ci sa constantd, i =1,2, . . . ,n are inde-
pendent solutions of the following equation:

dx1

P1
=

dx2

P2
= ¯

dxk

Pk
= ¯

dxM

PM
=

dZ

R
. sB2d

Note the functionF being arbitrary, it can also be chosen
as

F ; o
j

suj − cjd = 0. sB3d

The equations for variousyj in the set of Eq.s38d are of
the same form as Eq.sB2d and, therefore, can be solved as
described above. Let us first consider the equation fory1; its
general solution can be given by a relation
Fsu1,u2, . . . ,uMd=0 where functionF is arbitrary anduj are
the functions ofM parameters of setb such thatujshbj ,y1d
=cj swith cj’s as constantsd. The functionsuj are the inde-
pendent solutions of the equation

dbps1d

fps1d
= ¯ =

dbps2d

fps2d
= ¯

dbpsrd

fpsrd
= ¯ = dy1, sB4d

where the equality between ratios is implied for all possible
combinationspsrd of r terms,r =1→n, with M as the total
number of combinations. It is easy to see that each of the
above ratios is equal toor,psrdzp

s1ddbp/or,psrdzp
s1dfp wherezp

s1d

are arbitrary functions. EquationsB4d can therefore be re-
written as

dy1 =
or,psrd zp

s1ddbp

or,p
zp

s1dhp

. sB5d

A solution, sayu1 of Eq. sB5d, or alternatively Eq.sB4d, can
now be obtained by choosing the functionszp

s1d such that the
right side of the above equation becomes an exact differen-
tial:

u1 ; y1 − o
r,psrd

E dbpzp
s1dG1 = const, sB6d

where G1=for,psrdzp
s1dhpg−1. The general solution fory1 can

therefore be given by a combination of all possible functions
u obtained by using an arbitrary set ofz functions. It can be
shown that each such solution differs from the other only by
a constant:uj =ui +conststhis is due to equality of the two
ratios obtained by choosing two different setszs1d of the
functionsd. The y1 can therefore be written as follows:

y1 = o
r,psrd

E dbpzp
s1dG1 + const sB7d

which gives Eq.s40d for k=1.

The set of Eqs.s38d can similarly be solved for otheryj
s j .2d. For example, the solution of Eq.s38d for yk can be
given by the functionFksv1, . . . ,vMd=0 where v jshbj ,ykd
=const are the independent solutions of following equality:

dbps1d

fps1d
= ¯ =

dbps2d

fps2d
= ¯

dbpsrd

fpsrd
= ¯

dyk

0
. sB8d

A solution, sayv1, of Eq. sB8d can now be given as

v1 ; yk − o
r,psrd

E dbpzp
skd = const, sB9d

wherezp
skd are arbitrarily chosenM functions which satisfy

the condition

o
r,psrd

zp
skdfp = 0. sB10d

As is obvious, one possible choice forzskd functions satisfy-
ing the above condition iszp

skd=0 for all psrd which gives
yk=const.

As each solution of Eq.sB8d is different from the other
only by a constant, the general solution foryk, k.1, can now
be given as

yk = o
r,psrd

E dbpzp
skd + const. sB11d

Equation sB7d and Eq.sB11d together give the set of Eq.
s40d.

APPENDIX C: EXAMPLE FOR QUANTUM HALL CASE

Within independent Landau level approximation, the
quantum Hall ensemble can be described by the probability
densityrsHd given by Eq.s1d with coefficientsb given by
Eqs.s57d and s58d. However, it can further be simplified by
choosing the origin of energy ate0 which makesbm=kHml
=0. The matrix element distribution in the quantum Hall case
can now be described by a probability density

r̃sH,bd = C expF− o
m1,m2=1

M

bm1m2
Hm1

Hm2G sC1d

with C as the normalization constant

C−1 =E dHe−om1m2
bm1m2

Hm1
Hm2 = Sp

s=1

2

Det BsD−1/2

. sC2d

HereBssd is the matrix of coefficientsbm1m2
. The parameters

bm1m2
are related to second order correlationkHm1

Hm2
l:

kHm1
Hm2

l =E Hm1
Hm2

r̃dH sC3d

=
hm1m2

2

] ln C

]bm1m2

, sC4d
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wherehm1m2
=2 and 1 for pairshm1j=hm2j and hm1jÞ hm2j,

respectively. LetQssd be the matrix with its elements as
the correlations between elements ofH, that is, sQssddm1m2
=s4/hm1m2

dkHm1
Hm2

l. By using Eq. sC2d in Eq. sC4d, we
get

Qm1m2

ssd =
] ln DetfBssdg

]bm1m2

=
CofsBm1m2

d

DetfBssdg
= sBssddm2m1

−1 , sC5d

where CofsBm1m2

ssd d implies the cofactor of the elementBm1m2

in the matrixBs. This impliesQssd=sBssdd−1. The matrixBssd

for the QH case can therefore be obtained by inverting the
correlation matrixQssd=hQm1m2

ssd j.
Let us consider the caseN=2. Using theHm notation,

various components of matrix elements can now be denoted
as H1=H11;1, H2=H12;1, H3=H22;1, H4=H12,2. Following
Eq. s60d, the correlation matrixQs1d in this case is a 333
matrix

Qs1d = 1 a o 2ax

o a/2x1 0

2ax 0 a
2 , sC6d

where a=sV0
2/2lcLyaÎ2pd, x=e−1/2a2

and x1=ea2/2. By
using the relationsC5d, Bs1d can be given as

Bs1d =
1

as1 − 4x2d1 1 o − 2x

o 8x1s1 − 4x2d 0

− 2x 0 1
2 . sC7d

Due to the Hermitian nature ofH, only its off-diagonal ele-
ments have imaginary parts. ForN=2 case, therefore,Bs2d is
just a 131 matrix, corresponding to correlationkH4H4l with
m4;s12;2d: Bs2d=b44=s2kH4H4ld−1. The parameter sety for
this case can now be obtained by solving the conditionAk
=oi,j=1

4 f ijs]yk/]bijd=dk1, where f ij =gbij −s1/2dok=1
4 gkcikcjk;

heregk=2 for odd k and gk=1 for evenk. As discussed in
Appendix B, a solution of the condition can be given as

db11

f11
=

db12

f12
=

db13

f13
=

db22

f22
=

db31

f31

=
db23

f32
=

db33

f33
=

db44

f44
=

dyk

dk1
. sC8d

The above equations can now be solved by making the ratio
exact differentialffollowing from Eq. sB5d of Appendix Bg,

dFk

Gk
=

dyk

dk1
, sC9d

wheredFk;oi,jzij
skddbij and Gk;oi,jzij

skdf ij with zskd as arbi-
trary functions. Using Eq.sC7d, theGk can be shown to be

Gk =
4

s1 − 4x2d2a2†sz11
skd + z33

skddfsga − 4d − 4x2sga + 1dg

+ sz13
skd + z31

skdd4x„8 − gas1 − 4x2d…

+ 16z22
skda−2x1sga − 16x1d − z44

skdax1
−1s2gx1 + ad/2‡.

sC10d

Similarly

dFk ; o
i j

zij
skddbij = fsz11

skd + z33
skdddx2 − 2sz13

skd + z31
skdddsxx2d

+ 2s4z22
skd − z44

skdddsx1/adg, sC11d

wherex2=a−1s1−4x2d−1. As bothdF1 and G1 are functions
of lc and s sthrough a and ad, y1 will turn out to be a
function of parameterlc ands,

y1 = o
i j
E dbij

zij
s1d

G1
=E dF1slc,sd

G1slc,sd
. sC12d

Proceeding similarly forykk.2, a solution foryk can be
given as

yk = o
i j
E dbijzij

skd, sC13d

wherezskd satisfy the conditionsGk=0.
Note the conditionG2=0 is satisfied for a following

choice ofzs2d: z11
s2d=−z33

s2d, z13
s2d=−z31

s2d, andz22
s2d=z44

s2d=0. They2
for this choice turns out to be a constant. Similarly the
condition G3=0 can be satisfied for a following choice
of zs3d: sz11

s3d+z33
s3dd / sz13

s3d−z31
s3dd=f4x8−gas1−4x2dg / fsga−4d

−4sga+1dx2g and z22
s3d /z44=a3x1

3sg+ax1/32d /64sgax1−16d.
Using thesez values in Eq.sC13d, one can obtainy3 as a
function of s and lc. Note althoughy3 varies with changing
s and lc, howeveroi j f i js]y3/]bijd=0 and thereforey3 does
not affect the evolution ofrsHd.
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